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Abstract

Managing data is one of the main challenges in distributed systems and computer

science in general. Data is created, shared, and managed across heterogeneous distributed

systems of users, services, applications, and devices without a clear and comprehensive data

model. This technological fragmentation and lack of a common data model result in a poor

understanding of what data is, how it evolves over time, how it should be managed in a

distributed system, and how it should be protected and shared. From a user perspective,

for example, backing up data over multiple devices is a hard and error-prone process, or

synchronising data with a cloud storage service can result in conflicts and unpredictable

behaviours.

This thesis identifies three challenges in data management: (1) how to extend the

current data abstractions so that content, for example, is accessible irrespective of its

location, versionable, and easy to distribute; (2) how to enable transparent data storage

relative to locations, users, applications, and services; and (3) how to allow data owners to

protect data against malicious users and automatically control content over a distributed

system. These challenges are studied in detail in relation to the current state of the art

and addressed throughout the rest of the thesis.

The artefact of this work is the Sea of Stuff (SOS), a generic data model of immutable

self-describing location-independent entities that allow the construction of a distributed

system where data is accessible and organised irrespective of its location, easy to protect,

and can be automatically managed according to a set of user-defined rules.

The evaluation of this thesis demonstrates the viability of the SOS model for managing

data in a distributed system and using user-defined rules to automatically manage data

across multiple nodes.

The code for this work can be found online at the following URL:

https://github.com/sea-of-stuff (GNU GPL v3).
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Introduction

1.1 Introduction

Among historians, history is defined as “the study of past events” and is commonly

known to have started when humans have invented writing [1]. Any event prior to the

invention of writing, instead, is known to have happened in the prehistoric era. With the

invention of writing, humans have started to record facts, events, trading exchanges, stories,

thoughts, and anything else we could possibly imagine. With the ability to write, humans

started not only to produce information, but also to store it: inside caves, on stones, papyri,

wood, and, later, paper. Humans did not just produce and store information, but they did

so in ever growing amounts. Throughout history, the invention of papyrus, paper, and the

printing press has allowed information to be stored and replicated more easily, faster and

at a lower cost than before. However, none of these technologies has had the same impact

on information storage as the invention of the digital computer.

The two main building stones of computing are: data and algorithms [2]. Data and

algorithms are so important in computing that sometimes computer science itself is defined

as the science of processing data [3, 4, 5, 6]. In this work we are going to focus mainly on

data and the algorithms used to manage data. Looking at the history of computing from

a data-centric perspective, it is interesting to note how the digital computing revolution

has allowed us to generate and store data at an ever-growing pace. It has been estimated

that the size of the “digital universe” has grown by approximately 16 zettabytes1 in 2016

1One zettabyte (1 ZB) = 1021bytes = 1 trillion gigabytes.
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Chapter 1. Introduction

only and the trend is exponential [7, 8]. Together with the internet, we are now able

not only to create and accumulate data, but also to do so while sharing it across the

globe. The computing revolution has not slowed down ever since the invention of the

internet, with the number of devices and amount of data constantly increasing. The result

of the increase of connectivity is data flowing in all directions and users constantly sharing

photos, videos, documents, etc. In addition, most people own multiple computing devices,

which often synchronise data with cloud services and send it to other devices and users.

However, how the internet and its web services work is much more complex than sending

and receiving data from a user’s device to another. For example, a cloud-based backup

application replicates data to multiple locations hidden to the user and synchronises it to

the user’s devices, but the actual behaviour is hard to predict and understand. The model

controlling the data, in fact, is complex and bound to the specific service. Given this

complexity, it is necessary to study how data management can be improved and simplified,

and create processes and algorithms built around data concepts that are not bound to a

specific service, application, or user, and that are easy to understand for the user, easy to

implement, efficient to execute, and complete enough to capture the needs of today and

adapted to the needs of tomorrow.

To summarise, even though data has become pervasive and the difficulty in using dig-

ital devices has decreased drastically, data management is still challenging. This thesis

identifies three challenges that users face: (1) how to extend the current data abstrac-

tions, which have been around for decades but have not adapted to the needs of today’s

applications and users, so that content, for example, is versionable, easy to distribute, and

accessible irrespective of its location; (2) how to enable transparent data storage relative

to locations, applications, and services; and (3) how to allow data owners to properly and

effectively protect data and automatically control it over a distributed system.

1.2 The Three Challenges

The Background and Literature Review chapters discuss the problems highlighted by

these three challenges in more depth and breadth.
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1.2. The Three Challenges

1.2.1 Limitation of the Current Data Storage Abstractions

The family of persistent data storage systems can be logically subdivided in two main

branches: file systems and databases. As the name suggests, file systems are designed

and built around the concept of the file; whereas databases are designed around the idea

of storing data, possibly related to each other, in an organised and efficient manner. File

systems are also commonly associated with the hierarchical structure of files and directories,

a concept any computer user is familiar and comfortable using. Hierarchical file systems,

however, have been around for almost half-century and have not evolved rapidly enough

to cope with the user needs and the new technologies [9, 10, 11, 12].

In [13], Jim Gray states that “everything builds from files as a base”, from composite

data formats to databases (i.e., tables are usually stored as files), but some file systems

have actually slowly become database systems themselves.2 Gray is not suggesting that

all file systems have become databases, but rather that the file system abstraction is

outdated and must be re-thought. Take, for instance, the growing trend for end-users

to use application-centric systems over data-centric systems. Application-centric systems,

like Android3, iOS4, or the Windows 8’s metro5, tend to hide the hierarchical structure

of the underlying file system while enhancing it with the help of a better user-interface

and other services. Application-centric systems also hide the file metaphor as much as

possible and simply present data via applications. An application, for example, may use

a metadata database to provide additional information about the data displayed or it can

interact with an external data storage service for better data reliability and data sharing.

These are only two of many examples of how applications and services are being created

around data-centric systems, such as file systems, to facilitate complex actions, such as

sharing or data replication, and to hide complexities, such as a complex hierarchical file

system structure. However, actual storage system implementations are not forced to fall

within one category: file systems or databases. In fact, it is quite common for a storage

2It should be noted that some databases run on raw partitions and not file systems.
3Android. https://android.com/ [last accessed on 11/10/2017].
4iOS. https://apple.com/ios/ [last accessed on 11/10/2017].
5Microsoft Windows. https://microsoft.com/windows/ [last accessed on 11/10/2017].
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Chapter 1. Introduction

system to have traits from both branches, as suggested in [13].

When new software is released, users can benefit not only from new features, but also

from new ‘mental models’ about data. As a result, users interact with data in new ways

and both the users and the systems acquire new behaviours. One of the side effects of this

is a misalignment and lack of correspondence between the ‘real model’ and the ‘mental

model’ of how files are understood [14]. The most basic data operations: create, read,

update, delete (CRUD) [15] are well understood by most users and it is easy to associate

these operations with files when working locally. The standard file metaphor, however,

is overloaded and much more complex and hard to define [16, 17]. In fact, the number

of operations on files is larger than the simple CRUD operations. Users want to move,

rename, duplicate, share, synchronise, protect, associate, tag, replicate, version, sign files.6

Each of these operations makes the original file definition, based on CRUD, more complex

and harder to understand. Let’s take, for example, the ‘synchronise’ operation. When

taking a photo with a smartphone, this is saved to the local storage of the device and

a backup application (or applications) will start synchronising it to an external service,

which itself will replicate the photo to multiple data servers transparently to the user.

Näıvely, users understand the ‘synchronise’ operation as a simple ‘copy’ operation, even

though there are more underlying processes happening, which can also lead to behaviours

difficult to predict. For example, a synchronisation process might involve two nodes that

act on the same data, stored locally, independently of each other so that conflicts may

arise. In this scenario, one node attempts to propagate a data change while the other a

data deletion. The resulting state of the system, whether the data is deleted on the first

node or copied back on the second node, does not always reflect the user’s intentions.

In particular, this thesis claims that storage abstractions should address the following:

• Data abstraction over locations. Data should be accessible irrespective of where

it is stored and from where it is accessed.

6This is not a comprehensive list of all the operations that are allowed on files, and data in general, that
users wish to accomplish.
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• Versioning. It should be possible to version data, at arbitrary granularities, so

that users can see how data has changed and revert to previous changes if needed.

Versioning models also favour collaboration over data.

• Rich metadata support. Metadata is used to improve retrieval, usage, and man-

agement of data. Therefore, richer metadata results in better data storage services.

Data storage abstractions should also be designed and built taking into account the

following non-functional requirements:

• Implementation independence. The abstractions should be described as concepts

independent from their actual implementation.

• Scalability. These abstractions should be usable in a system that scales globally.

• Data integrity. Users and/or services operating on such abstractions should be

able to verify whether a data/metadata has changed or not.

• Security. Users and/or services should be able to protect data/metadata from being

accessed from unwanted parties.

1.2.2 Transparent Data Storage

The aim of a data storage solution providing transparent properties is to hide any

complexities from its users. Transparency can be applied over many aspects of a system,

but often only location transparency is addressed. Location transparency ensures that the

name associated with the data is related to the actual data rather than to its locations.

This work, however, suggests that data storage systems should also address transparency

over applications and services.

A feature that makes cloud storage applications and services very useful, and popular,

is their ability to abstract the stored content from locations. Whether data is stored in

a cloud storage application, like Dropbox [18] or OneDrive [19], or in a cloud storage

service, such as Amazon S3 [20] or Rackspace Cloud Storage [21], the location of the data
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is transparent to users or applications. Users do not have to remember all the locations of

the different replicas of the stored data. As a benefit, the data stored will comply with the

service-level agreement of the service, meaning that data is stored with high-reliability, -

availability and -durability at a reasonable, and often little, cost. Relying on cloud storage,

means also less maintenance, relying on the work of hundreds of thousands of engineers

hours, and good scalability. Storing data in the ‘cloud’, however, can also present some

issues:

• Services can go down, even if they promise 99.9999+%7 availability/reliability/dura-

bility.

• Data is locked-in: users have little or no control over the data stored in the cloud.8

• The company providing the service can go bankrupt.

• Data might not be stored safely and securely [22, 23, 24, 25].

Moreover, even though cloud services abstract data over their locations, data is still not

abstracted over location-services. For example, imagine having a version control repository

in your local file system, which is also synchronised with a remote version control service

and backed-up to a cloud storage service. The file system, the remote version control

service, and the cloud storage service each provide location abstraction, but each of them

also represents a location-service, which is not abstracted to the user.

A common solution to have transparency over cloud services is to build a ‘cloud of

clouds’ (CoC), where a generic data management solution provides abstraction over mul-

tiple cloud services [26, 27, 28, 29, 30]. CoC, however, have the following limitations:

7For a time-based property, a six-nine probability (99.9999%) is equivalent to 2.6 seconds downtime per
month, or 31.2 seconds downtime per year.

8For example, most cloud storage solutions allow users and/or applications to choose the geographical
regions where data is stored. However, while advantageous, this level of abstraction is still limiting, as
one is often not able to describe precisely where data should be stored. Plus, it is usually the case that
extending this level of control over multiple cloud solutions is not possible.
In cloud storage, data deletion is also an issue, since one cannot delete data directly and must trust that
the cloud service is properly deleting it.
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• Their generic abstraction provides a smaller subset of functionalities, so as to adapt

to many cloud services (or it provides many features, but not all of them for all

services).

• Moving content across the underlying cloud services is still challenging.

• Moving content while preserving its provenance, metadata and integrity is still hard.

• Data is still locked-in, but in multiple cloud services rather than one.

1.2.3 Data Ownership, Protection and Control

The third challenge is related to how to allow users to explicitly state ownership over

data, how to effectively protect data and how to automatically control it over a distributed

system. These three sub-challenges are linked together as they question what users can do

with their own data.

1.2.3.1 Ownership

Data ownership is the relationship between a user and some arbitrary data that he/she

‘possesses’. In digital systems data ownership is implemented by mapping the concept of

user to data. However, the concept of user, as well as the type of mapping of the data,

is strictly related to the system in question. In most systems, the concepts of users and

ownership are not built in the data model of the system, but are rather built on top of

it. Having the concepts of users and ownerships separated from the data model results in

a non-uniform behaviour and management when the system is distributed and/or has to

interact with other systems.

1.2.3.2 Protection

Related to ownership is protection. Protection is the ability to stop unwanted users

to freely access data. With data sharing being central to distributed storage, protection

is a fundamental aspect to provide a proper service. In most traditional storage systems,

for example, data is protected by simply assigning password protected users to it (i.e.,

authentication), but the actual data is not protected via encryption. Cloud storage services,
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instead, protect users’ data via encryption, but users have no control over the actual

protection mechanism since this is not part of the data model, but part of the cloud

service architecture.

1.2.3.3 Control

Finally, the third sub-challenge is related to how to allow users to control their data in

a distributed environment and how to let the system perform control automatically. This

works defines control over data as the ability to decide and act upon the data, such as

copying, encrypting, or deleting it. Controlling data in a distributed system is challenging

and even more so when the task has to be run autonomously. The current commercial

solutions that allow control over content are ad-hoc tools, such as Syncthing9 and Resilio

Sync10. Large distributed storage systems and cloud storage services adopt automatic

data control mechanisms, but they require specialised technical knowledge that the typical

end-user does not have.

1.3 Hypothesis

The ability to correctly and easily store and control data is hard to achieve. Ideally,

one would wish to have a system that satisfies the following properties:

1. Storage space is infinite.

2. The system minimises the latency of access to data.

3. Data is always available regardless of its location and the locations of users.

4. The system abstracts the physical location of data and metadata.

5. Access to data and metadata can be controlled.

6. Data and metadata may be shared between globally distributed users.

7. Arbitrary levels of resilience may be defined and automatically enforced.

9Syncthing. https://syncthing.net/ [last accessed on 03/11/2017].
10Resilio. https://resilio.com/ [last accessed on 03/11/2017].
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8. All data and metadata may be versioned.

The above properties are hard to achieve due to theoretical and physical limits. This

thesis attempts to approximate to these properties at two distinct levels: (1) at a level that

is visible to users and (2) at the system level — as realised by a computational model.

This thesis hypothesises that:

H1:

A data model based on immutable, self-describing, re-computable, and content-

addressable entities can be used to build a distributed data management system

which approximates to the properties 1–2 and satisfy the properties 3–8 above

in a manner that provides advantages over existing storage systems.

H2:

A data model based on immutable, self-describing, re-computable, and content-

addressable entities can be used to build a personal distributed data management

system where data is automatically managed based on user-defined rules in a

manner which provides advantages over existing solutions and approaches.

The distributed storage model and the prototype developed in this work attempt to

provide the following properties:

1. Location abstraction. Users can perform data operations irrespective of where the

data is stored and from where it is accessed.

2. Copying, Moving and Sharing. Data and metadata can be copied, moved, and

shared across locations, users, and services at different granularities while retaining

their properties.
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3. Data Protection. Data and metadata can be protected independently of locations

and of each other. The result is the ability to protect data once and replicate it

many times. It is also possible to protect data, while leaving metadata readable to

everyone — if one wishes to increase the data’s discoverability — without necessarily

giving access to the actual content.

4. Versioning. Content can be versioned at different granularities.

5. Autonomic Data Management. Users can automatically organise and enforce

actions on data using well-defined rules.

6. Resiliency. Resiliency over data is supported by the ability of the model to abstract

entities over their locations. Entities are not trapped by a single system and can be

replicated across multiple nodes or services without any loss of information, thus

increasing the level of availability in the face of faults.

7. Users and Roles. Users can play multiple roles and access different data views

based on the role played.

8. Absence of Central Authority. Entities can be exchanged across individual nodes

without the need for a central authority.

To test the hypotheses H1 and H2, a proposed data model was designed, prototyped,

and later evaluated (see Chapter 5 for the design of the SOS and Chapters 7 and 8 for its

evaluation).

1.4 Thesis Contributions

The contributions of this work are:

1. The design of a generic model — the Sea of Stuff — for managing data in a

heterogeneous distributed system.

2. The design of a distributed architecture for managing data.
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3. A comprehensive literature review on data management.

4. An implementation of the model and architecture proposed.

5. An evaluation of the Sea of Stuff model.

6. The identification of a set of future research directions.

1.5 Thesis Structure

This chapter — Introduction — introduced the problems, challenges, and the re-

search hypothesis of this thesis and listed the contributions of this work.

Chapter 2 — Background — presents a summary of data management concepts nec-

essary to read the rest of the thesis. This chapter also provides an overview of different

storage systems and their properties.

Chapter 3 — Literature Review — presents the state of the art in data management

along with the dimensions identified by the hypotheses, as outlined in this chapter.

Chapter 4 — Design Requirements — outlines the needed requirements from the end-

user perspective, as well as the requirements need to design and implement the proposed

model.

Chapter 5 — The Sea of Stuff — presents the design of the Sea of Stuff model, rea-

soning about the design decisions made along the way and how it compares to the related

work. Furthermore, this chapter briefly described the prototype developed with its features

and limitations.

Chapter 7 — Comparative Evaluation — evaluates the Sea of Stuff model qualita-

tively against the solutions presented in the background and literature review chapters.
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Chapter 8 — Experimental Evaluation — evaluates the Sea of Stuff model quanti-

tatively through experimentations on the prototype developed.

Chapter 9 — Conclusions and Future Work — concludes this thesis and presents

a summary of future work directions.
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Background

This chapter introduces the basic concepts about data storage systems and provides

an introduction to the different classes of storage solutions.

Data storage is the study of recording and reading data into storage media (e.g., volatile

memory, hard disk, recording tape), and consists of (a) designing and implementing the

actual physical storage media and (b) designing and developing the software to allow the

operating system and/or the applications to use the storage media. This thesis will ignore

(a), as those are tasks and challenges belonging to the study of electronics, and will focus

on how storage is abstracted and managed via software. In particular, this thesis will focus

on the high-level techniques11, systems, and solutions to store persistent data locally and

in a distributed setting.

2.1 Data Storage Concepts

2.1.1 Data

Data12, in informatics, is defined as a sequence of bits — which can be created, read,

processed, saved, and stored digitally — and constitutes the basic building block for any

data storage system.

The way data is organised and stored — such as a file, a database entry, or a composition

of independent data elements — affects also the data ‘metaphor ’ perceived by users and the

set of operations associated with it (e.g., create, read, update, delete, share, copy, move,

11Techniques and methods on how to read, write, and process data on physical disks and manage IO in
general are not the focus of this work and will not be taken into account.

12The word data is the plural of the Latin word datum which stands for thing given.
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etc.). The most relevant data abstractions are discussed in more detail in the relevant

sections about the different types of data storage systems (see Section 2.2) and in the

Literature Review chapter.

2.1.2 Location and Naming

2.1.2.1 Location

Location is the “the place” where data is stored and from which it can be fetched.

However, this definition is ambiguous, since it is not always clear what and where this

place is and what the relationship with the logical data is. So we must distinguish location

into two types: the physical location and the logical location of the data.

The physical location of data indicates the place where it is stored on physical storage

media, such as a disk or a recording tape. However, understanding how data is managed

in different physical locations is beyond the scope of this work and will not be discussed

further in this thesis.

The logical location of data is the place where it is stored in relation to other data

or other abstractions, such as directories for file systems, from a user/application level

perspective. In a flat file system, which has only the root directory, the logical location

of the files and their names are one and the same. In hierarchical file systems, the logical

location of a file is related to its name and the structure of directories that contain it.

Directories are the abstractions that allow files to be organised in hierarchies. The textual

representation of logical locations is the path. The following, for example, is a path for

a file contained under the desktop directory, which itself is contained under the home

directory: home/desktop/a file

The path of a file consists of the definition of the name of the file and the description

of the logical location of the file in relation to directories and other files. Paths can

be absolute or relative. Absolute paths locate a file regardless of the current working

directory the user is in, while a relative path — as the name suggests — is a path that is

built relatively to another path.
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2.1.2.2 Naming

“Naming is a mapping between logical and physical objects” [31, p. 707] and allows

users to refer to files and directories using human-readable names even though these are

physically stored in a storage media and accessed by using physical “hard-to-read” ad-

dresses.13 The resolution of the naming mappings, such as the one below, is performed

by the name service of a system. A typical name service for a local file system resolves

the user-level name to its physical address, which corresponds to its actual location, as

following:

user level textual name → system level identifier → physical address

Naming is also very important in distributed systems, where data is distributed across

multiple nodes (see Glossary of Terms for the definition of node). In distributed systems,

naming and location are related one another and the following two properties must be

taken into account when looking at naming in a system [31, 32]:

• Location Transparency. The name associated with the data is not related to its

physical storage location.

• Location Independence. The name associated with the data does not need to

be changed when its physical storage location changes. A name service providing

location independence dynamically maps names to locations.

Finally, the collection of all the names allowed in a system defines the namespace.

There are two types of namespaces: local and global. Names in a local namespace are

unique only within a given node or set of machines. Systems using a local namespace can

concatenate the host name with the data name to provide a wider access to such data.

The web is an example of a system where file names are concatenated to a host name (i.e.,

http://〈domain〉/〈filename〉) in the form of a URI (Uniform Resource Identifier). This

technique, however, conflicts with the location transparency and location independence

13A physical address is a sequence of digits that indicate the actual location of the data on the physical
storage and it is hard-to-read for humans.
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properties described above, since the URI is related to the location of the data and needs

to be changed if the data is moved somewhere else. On the other hand, names within a

global namespace are unique over all the nodes of a system.

The remainder of this section briefly describes the URI, the globally unique identi-

fier (GUID), and content-addressable naming schemes, necessary to understand the next

chapters.

Uniform Resource Identifier

A URI is a string of characters that identifies a resource and follows the general scheme:

protocol:[[user[ password]@]host[ port]][path][?query][#fragment]

which is described in detail in the RFCs 2396 [33] and 3986 [34].

There are two main types of URIs: locator identifiers, or URL (Uniform Resource

Locator), and name identifiers, or URN (Uniform Resource Name). URLs define the

location of the resources, with the protocol describing how resources should be accessed.

Examples of URLs are:

• http://www.ietf.org/rfc/rfc2396.txt

• mailto:foo@bar.com

• https://doi.org/10.1109/JPROC.2010.2096170

URNs, unlike URLs, do not contain any hint about the location of the content. Exam-

ples of URNs are:

• urn:ietf:rfc:2648

• urn:guid:7A7B95D784007B930599D491366E0C272D119EB0

• urn:isbn:0451450523
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Globally Unique Identifier

A GUID (Globally Unique Identifier) is a number, of any length, used to uniquely

identify a resource in a system. That means that two resources cannot have the same GUID,

unless they are actually representing the same entity (i.e., they are the same sequence of

bytes). The RFC 4122 [35] defines a GUID as a 128-bit number that can be generated in

multiple ways (e.g., using a hash function) and that describes a resource uniquely within

the system adopting it. GUIDs shorter or longer than 128-bit can also exist. The following

is an example of GUID in hexadecimal format (32 digits, 4 bits each):

123e4567-e89b-12d3-a456-426655440000

Content-Addressable Naming Schemes

A content-addressable naming scheme allows storage systems to bind data to names

that are related to its actual sequence of bytes, such that a different sequence of bytes must

be bound to another name. In such schemes, the name of some content is usually generated

by applying a cryptographically secure hash function on the content (see Section 2.1.8.2),

so that a change to the content results also in a change in the name.

The purpose of content-addressable naming schemes is to abstract data from locations,

so that the users of such storage system are able to access data irrespective of where it is

stored or where it is accessed from.

2.1.3 Metadata

Metadata is “data about data” and it is used to facilitate retrieval, usage, and man-

agement of content. Metadata is usually structured data defined by well known stan-

dards [36, 37, 38], but it can take any arbitrary form. Jenn Riley defines metadata as

“key to the functionality of the systems holding the content, enabling users to find items

of interest, record essential information about them, and share that information with oth-

ers” [38]. Windows- and Unix-based file systems, for example, support a limited set of

metadata attributes (e.g., name, creation/modification/last access date, owner) that are

used to search, order, and understand the stored data. Application-based data storage
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systems — such as Google Photo14, Amazon Kindle15, or social networks like Facebook16

or Twitter17 — support richer metadata linkage with data. This, however, usually comes

at the cost of binding the data within the application ecosystem.

Metadata can also be generated by a system to enable certain features. For example,

distributed storage systems, such as the Google File System and GlusterFS, use location

metadata to map data with its storage locations. Likewise, desktop search applications,

such as Spotlight18 and Alfred19, index and enrich local data to provide better search

functions (e.g., find all the files authored by the user Simone, all the pdf files opened last

week, or all the images tagged as holiday).

For the purpose of this work, metadata is classified based on the relationship it has

with the data it describes:

Intrinsic metadata

Intrinsic metadata is metadata inherent to the data and embedded within it. We dis-

tinguish two types of intrinsic metadata: explicit and implicit. Explicit intrinsic metadata

(EIM) is structured metadata stored within the data, and thus easy to extract using meta-

data extractors. Examples of EIM are EXIF for JPEG or XMP for JPEG, PSB and PDF.

Implicit intrinsic metadata (IIM), on the other hand, is metadata that can be algorithmi-

cally extracted from the data. IIM is computationally expensive to retrieve. Examples of

IIM are: whether there is an animal in a JPEG photo, if the photo is mostly blue, the tone

of the voice in an audio or the speech-to-text translation of an audio file.

14Google Photo. https://google.com/photos/about/ [last accessed on 15/08/2018].
15Amazon Kindle. https://amazon.co.uk/kindle-dbs/fd/kcp [last accessed on 15/08/2018].
16Facebook. https://facebook.com [last accessed on 15/08/2018].
17Twitter. https://twitter.com [last accessed on 15/08/2018].
18“Spotlight is a fast desktop search technology that allows users to organise and search for files

based on metadata”. Spotlight is provided by Apple and available for Apple’s macOS and iOS op-
erating systems. https://developer.apple.com/library/content/documentation/Carbon/Conceptual/

MetadataIntro/MetadataIntro.html [last accessed on 09/10/2017].
19Alfred. https://alfredapp.com/ [last accessed on 09/10/2017].
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Extrinsic metadata

Extrinsic metadata is external to the data to which it refers and it may be stored

explicitly in a metadata-like manifest or provided implicitly by some underlying storage

system. Explicit extrinsic metadata (EEM) is metadata provided by applications and/or

users. Examples of EEM are tags or metadata stored within the pathnames.20 Implicit

extrinsic metadata (IEM), instead, is metadata provided by the native system, such as the

creation/modification/last-access times or the size of the data.

2.1.4 Caching

Caching is the practice of storing content temporarily in a fast storage location to

improve IO performance. Specifically, the operation of caching consists of storing data to

a location with faster access. Data might be cached for various reasons: due to an actor

of the system, or external to it, that requests some data; due to temporal locality of the

data; or because of the spatial locality of data.

In a local storage system, data is cached in the RAM (random-access memory) or in the

L1-2-3 CPU internal caches. In a distributed system caching occurs also at the node level.

Specifically, data can be cached in four places: the server’s disk, the server’s memory, the

client’s memory, and the client’s disk. Irrespective of the number and types of nodes of a

system, the individual interactions among them are always going to involve two nodes, one

of which acts as a client and the other as a server. The purpose of caching in a distributed

system is to store data to a node that is closer, geographically or topologically, to the client

so that latency is reduced.

Upon retrieving data, the cache is queried first. If the data is found, it is said that

a cache hit occurred and the data is returned. Otherwise, a cache miss occurred and

the data is retrieved from another, slower, location (e.g., the local disk or another node).

Depending on the strategy in place, the retrieved data is added to the cache so that future

requests will result in cache hits.

When caching data, one should take into account the following three issues: (1) the

20For example, information about the content loaded under the path home/photo/holiday/ can be inferred
by the naming of the directories.
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cached data may not be coherent21 across all cache locations; (2) maintaining the cache

coherent and up-to-date22 can become expensive and cumbersome over time; (3) the chosen

coherency model may not always satisfy everyone’s needs.

2.1.5 CAP Theorem

The CAP theorem, formulated by Eric Brewer, states that in a distributed system it is

possible to achieve only two of the following three properties:

• Consistency. The data is consistent across all available nodes.

• Availability. The requested data is always available at all reachable nodes.

• Tolerance to Network Partitions. The system is tolerant to failure of parts of the

network [39, 40].

The CAP theorem acts as a “rule of thumb” for distributed system designers and it is

commonly assumed that any distributed system must forfeit one of the three properties.

However, Brewer later rectified that the “2 of 3” rule is misleading, since some trade-off

of the three properties is also achievable [41]. In fact, the CAP theorem defines the above

constraints only when a system is under failure or not running under optimal conditions.

To the support of a more flexible CAP theorem, Abadi has proposed the PACELC23

formulation, which poses the following question: “if there is a partition (P), how does

the system trade off availability and consistency (A and C); else (E), when the system is

running normally in the absence of partitions, how does the system trade off latency (L)

and consistency (C)?” [42].

2.1.6 Replication, Erasure Coding, and Resiliency

2.1.6.1 Replication

Data replication is the process of copying — replicating — data to one or more locations

in order to achieve better data availability and stronger resistance to faults. For instance, if

21Coherency means that all clients requesting the cached data, should get the same exact data.
22The latest changes to the data.
23PACELC is pronounced as “pass-elk”.
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one node crashes or one piece of data is corrupted, the data can still be recovered from the

other replicas. Replication is also important to improve performance of data management

in a distributed system that requires scaling, quantitatively and geographically. Typically,

replication is used to balance load between multiple nodes [32, 43]. Additionally, in a

distributed system, data replication can be used to achieve caching by locating data over

strategic locations.

Replicating some data D by a replication factor n, results in an overall space cost of n

and a system that can tolerate n−1 replica failures. A technique to increase resilience is to

divide D in smaller blocks, which can be distributed independently. In the first approach,

D is stored in n locations; while in the second approach the blocks can be stored over n×c

locations, where c = (size(D)/size(block)). This means that the number of locations that

need to be unavailable for D to become also unavailable is higher in the latter case. The

downside of the latter, however, is that managing blocks that are replicated over many

more locations can be expensive. Chunking data into blocks also result in a system with

better throughput, since blocks can be transferred concurrently.

Overall, when integrating data replication in a system, the following should be taken

into account:

• Replicating data to a remote location has a cost which depends on multiple factors

related to such location: network properties, quality of service, and the actual price

of buying, renting, and/or maintaining the storage location.

• Where to replicate data. A system might want to replicate data closer to where it

is accessed, but also spread it across multiple distant geographical locations, so that

storage is more resistant to geographical related issues.

• How many replicas to have for some given data (the replication factor). Increasing

the replication factor increases also the redundancy, availability, and fault resistance

of the data, but it also requires more storage space, which has a cost in terms of

management, money, energy, and actual physical space.
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• When to replicate data. A system might optimise its replication process by replicat-

ing data only when necessary, for example when a particular piece of data is more

requested.

• Keeping track of where the replicas are has a cost, since the storage nodes storing

the replicas should be periodically queried.

• Keeping the replicas consistent has also a cost, since it might involve complicated

algorithms such as the two-phase commit [44] or the paxos [45] protocols.

• Some of the replicas might become out-of-date and policies to update or discard them

should be designed.

Data Consistency

When considering consistency for data storage in distributed systems, we look at two

main approaches: eventual consistency and read-after-write consistency (sometimes known

as strong consistency). Eventual consistency is achieved if all the replica locations eventu-

ally contain the same data, without any constraints on when consistency will be achieved.

However, in a system with high churn24, eventual consistency may never be achieved. In

the read-after-write consistency model, instead, data is consistently available to be read im-

mediately after it has been written. A system implementing a read-after-write consistency

model usually forfeits availability in favour of consistency (see CAP Theorem, 2.1.5).

2.1.6.2 Erasure Coding

An alternative approach to achieve high redundancy, availability, and resiliency while

saving storage space is via erasure coding [46, 47, 48, 49]. Erasure coding is an error-

correction technique that extends some data D consisting of n symbols with some additional

k symbols, such that only n symbols are needed to re-construct the original data. A symbol

could be a single bit or byte of data, or, more commonly, a block of data. Erasure coding is

24Churn is a measure of the number of nodes that join or leave a given system.
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used to manage volumes of disks, for some RAID levels (Redundant Array of Independent

Disks) [50], or in distributed systems [51], by distributing n+k blocks over multiple nodes.

The general erasure coding mechanism consists of dividing some data D in n data blocks

and calculating k coding blocks, such that the storage space cost is n+k and the system can

tolerate k block failures. The advantage of erasure coding over simple replication (where

data is chunked into smaller blocks), is that it is possible to achieve the same level of fault

tolerance, but with a lower storage cost, as outlined by the ratio:

storage cost(erasure coding)

storage cost(replication)
=

c + k

c× (k + 1)
;

where:

c = is the number of blocks that the data is divided into

k = is the number of block failures that can be tolerated

It follows, for example, that choosing (n, k) to be equal to (10, 4) for erasure coding

and (10, 2) for simple data replication (3 replicas), results in a 53.4% storage space saving

and the ability to tolerate 4 block failures instead of 2.

However, maintaining the level of resilience constant when parts of a system fail can

be expensive. The näıve approach for recovering a data block requires the reconstruction

of the data with n blocks to recalculate the missing one. This puts a significant stress

on the system network bandwidth and overall disk IO. More efficient repair mechanisms

have been designed, but require more complex coordination among the components of the

system [52, 53, 54]. Different block placement strategies can also have a significant impact

on the system performance [55].

A technique to increase erasure coding write performance is to divide the data D in

blocks and apply erasure coding for each block, so that when updating D, erasure coding

has to be reprocessed only for the blocks that have changed. This approach is used by

Tahoe-LAFS [56] (see Literature Review Chapter, Section 3.5.2.4) and MaidSAFE [57].
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2.1.6.3 Resiliency

Resiliency, or fault tolerance, is the ability of a system to continue to provide its service

in the face of faults (e.g., a part of the system does not return the expected result, a

remote server does not respond or produced an error message, the network is partitioned).

Resiliency is a very important property in distributed systems, where failures are the

norm, not the exception. For a system to be classified as resilient, two requirements must

be satisfied:

1. The system can continue to provide a service even if some of its components are down

or malfunctioning.

2. Components of the system can automatically recover from failures without affecting

the behaviour and performance of other components.

2.1.7 Scalability

Scalability is the ability of a system to cope with growth in the amount of work to

be done. A system is said to be scalable even if its behaviour degrades definitely and

noticeably, as long as such degradation remains acceptable to the users of the system. In

the case of storage systems, scalability is generally considered along the following axes:

• The number of data entities.

• The size of data entities.

• How data is organised (e.g., through directories for files, or buckets for objects in

cloud object storage services).

• The number of nodes, in a networked or distributed storage system, that can be

supported.

• The number of clients that can be served by a node simultaneously.

• The amount of requests that a node can satisfy.
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Scalability can be addressed at the software level, by designing and building a system

that can handle more workload within the same time frame, and at the hardware level, by

either scaling horizontally (adding more nodes) or vertically (adding more resources to the

existing nodes of the system). Horizontal scaling is a common approach since it can be

achieved using commodity hardware, but it requires more complex coordination among all

machines. Vertical scaling, instead, is easier to implement, but more expensive and limited

by the amount of resources that can be added to a single machine.

2.1.8 Security

Computer security is the field that studies how to protect a computer system from

being corrupted or damaged, information from being read without authorization, and a

service from being disrupted. Security is a vast topic, so this section will only cover the

concepts relevant to the understanding of this work.

2.1.8.1 Ownership, Access Control and Capabilities

One of the basic protection mechanisms in security is the ability to assign ownership

over data, define who has access to it, and what operations a given user or a collection

of users, a group, is allowed to perform. This section illustrates the basic protection

mechanisms employed by Unix file systems.

The owner/group/other Unix permission model

The owner/group/other Unix permission model is the most common mechanism to

control access over files and directories. In this model, each file or directory is associated

with its owner (e.g., sic2, al, gnck), a named group (e.g., students, staff), and other,

a special group used to indicate any user of the system. Users and groups are associated

with unique system identifiers, ‘uid’ and ‘gid’ respectively. The example in Snippet 2.1

shows the owner/group/other permissions of some files through the use of the ls utility.

The owner/group/other Unix permission model, however, provides only limited access

control for systems that have more than one user and/or one group. This limitation is

overcome using access control lists or capabilities (see below).
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1 $ ls -l

2 -rw-r--r-- 1 sic2 students 314 30 Aug 14:40 README.md

3 -rw-r--r-- 1 al staff 24093 25 Nov 17:37 bibliography.bib

4 drwxr-xr-x 12 sic2 students 384 28 Nov 11:04 chapters

5 lrwxr-xr-x 6 gnck staff 192 27 Nov 17:50 experiments -> /Users/sic2/git/experiments

6 -rw-r--r--@ 1 gnck staff 25349 27 Nov 17:59 experiments.xlsx

7 -rw-r--r-- 1 sic2 students 6444 27 Nov 17:07 main.tex

Snippet 2.1: Example of ‘ls -l’ output showing the permissions on files and directories. The first

column indicates the mode of the listed entity. The mode is composed by the file type (e.g., ‘-’ for a

regular file, ‘d’ for directory, ‘l’ for symbolic link), and three permission classes for user, group, and

other. Each permission class consists of the triplet ‘rwx’ (read, write, execute). The third column

indicates the user-owner, while the fourth column indicates the group-owner.

Access Control Lists

Access control list (ACL) is a security mechanism to enforce more fine-grained control

over who can access some given data and what operations a user, or group, is allowed to

perform [58]. In ACL, a file or a directory is associated with a list of users/groups and

the type of access they have been granted (e.g., read, write, execute, etc.). Snippet 2.2

illustrates an example of ACL in a Unix file system. Windows systems use a similar

approach by using a list of access control entries [59].

ACLs enable complex access control patterns, however, its maintenance can be chal-

lenging, especially in a system with many users and/or groups.

1 $ getfacl -d main.tex

2 # file: main.tex

3 # owner: sic2

4 # group: students

5 user::rwx # Base ACL Entry, mask not applied

6 user:gnck:rwx # Effective:r-x

7 user:al:rwx # Effective:r-x

8 group::rwx # Base ACL Entry, effective:r-x

9 group:staff:r-x
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10 mask:r-x

11 other:r-x # Base ACL Entry, , mask not applied

12 # The default ACL can be specified for files only

13 default:user::rwx

14 default:user:gnck:rwx # Effective:r-x

15 default:group::r-x

16 default:mask:r-x

17 default:other:---

Snippet 2.2: Example of an ACL list.

Capabilities

Capabilities are a security technique that defines what operations a user is allowed to

perform on some given data. A capability is an unforgeable token, or key, that grants

its owner permissions to access an entity, such as a file, and to perform operations upon

it [60, 61, 62, 63]. Further, a capability could also be the address of the entity, as suggested

by Fabry [60], so that the address is independent of the location of the entity and a change

in location of the entity does not involve any change in the capability.

Similarly to ACL, capabilities can also be hard to maintain, such as the process of

revoking access to a particular user to a particular entity, when this user has already made

a copy of the entity.

2.1.8.2 Data Integrity

Data integrity is the property of data to be consistent over time. Data integrity is an

important property in the context of security and a system that supports data integrity

should be able to detect unintentional data changes or data integrity loss, such as when

data changes due to hardware faults or a malicious user changes the data.

One of the techniques used to verify data integrity is to generate hashes from the data.

One such hash function is MD5. The MD5 algorithm is a hash function generating 128-bit

hash values (see RFC 1321 [64]). The algorithm, however, has been proven broken multiple

times over the years, making it vulnerable to malicious attackers [65, 66]. More popular

and secure alternatives to the MD5 hash function are the SHA cryptographic hash func-
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tions. The SHA algorithms are a family of hash functions created and published under

the National Institute of Standards and Technology (NIST). As of the time of writing, the

SHA family comprises four sub-family of algorithms: SHA-0, SHA-1, SHA-2, and SHA-3.

SHA-0 was dismissed after a few years of its publication and so it is rarely used [67, 68].

The SHA-1 hash function produces a 160-bit hash value, usually represented as a hexadeci-

mal string 40-character long. An example of the result of a SHA-1 function is the following:

SHA-1(‘‘The quick brown fox jumps over the lazy dog’’) =

2fd4e1c67a2d28fced849ee1bb76e7391b93eb12

SHA-1, unlike the SHA-0, has been more resistant to collisions25, which were found

only recently in early 2017 [69]. The SHA-1 is widely used across a large number of appli-

cations and systems. In storage systems, the SHA-1 function is used to uniquely identify

content.26 The advantage of using a cryptographic function is that (1) it outputs a fixed

size sequence of bits; (2) it is infeasible to reverse; and (3) it can be used to verify the in-

tegrity of the data that generated the hash value. Thus, if one bit of the data has changed,

then re-calculating the hash function will generate a new non-matching hash value. Some

version control systems use SHA-1 to hash both the versioned data as well as a refer-

ence to the previous versions of the data (i.e., the history of the repository). Using this

approach, it is possible to verify the integrity of the versioned content as well as of the

history of the repository (see Sections 2.2.3 and 3.3 to know more about version control

systems). The SHA-2 and SHA-3 algorithms produce larger hash-values and provide bet-

ter security against collisions. However, SHA-2 and SHA-3 have not seen a wide use until

recently, as both computation power and storage space have improved and become cheaper.

SHA-2-256(‘‘The quick brown fox jumps over the lazy dog’’) =

d7a8fbb307d7809469ca9abcb0082e4f8d5651e46d3cdb762d02d0bf37c9e592

25A collision is the event when a function maps two different inputs to the same output.
26SHA-1 is not collision free, but the probability of generating a random pair of hashes that collides is

less than one in 280.
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SHA-3-256(‘‘The quick brown fox jumps over the lazy dog’’) =

69070dda01975c8c120c3aada1b282394e7f032fa9cf32f4cb2259a0897dfc04

Algorithm (and
variant)

Output size
(bits)

Max. mes-
sage size

Security bits Published
year

MD5 128 Unlimited <64 1992
SHA-0 160 264 - 1 <34 1993
SHA-1 160 264 - 1 <63 1995
SHA-2 (-256) 256 264 - 1 128 2001
SHA-2 (-512) 512 2128 - 1 256 2001
SHA-3 (-256) 256 Unlimited 128 2015
SHA-3 (-512) 512 Unlimited 256 2015

Table 2.1: The most relevant cryptographic hash functions. The number of security bits is a
measure of the number of possible outputs a hash function has and therefore indicates how hard it
is to find an input with a given output.

2.1.8.3 Data Protection via Encryption

In addition to ensuring data integrity, sometimes one may wish to protect data from be-

ing read by unwanted parties. In order to protect data, encryption algorithms are adopted.

Encryption algorithms allow bytes of data, that we want to protect, to be transformed to

another sequence of bytes using an encryption key, so that it becomes very hard to trans-

form such encrypted data back to its original form, unless the decryption key is known. The

encryption algorithms can be classified as symmetric or asymmetric. Without going

into the mathematics of encryption algorithms, symmetric-key encryption requires a single

key to both encrypt and decrypt the data; while asymmetric encryption requires a pair of

keys, where one is used to encrypt the data and the other one to decrypt it. A common

use of asymmetric encryption is one where one of the keys (public key) can be distributed

publicly without compromising the security enforced by the other matching key (private

key). Asymmetric encryption is generally more expensive than symmetric encryption, so

its usage has often been limited to encryption of small data, key management by encrypt-
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ing symmetric keys, and digital signature [70]. The diagram in Figure 2.1 illustrates the

difference between symmetric-key and asymmetric-key encryption.

(a)

Clear 
Data

Encrypted 
Data

Clear 
Data

Symmetric 
Key

Symmetric 
Key

(b)

Clear 
Data

Encrypted 
Data

Clear 
Data

Public 
Key

Private 
Key

Figure 2.1: A schematic of (a) symmetric encryption and (b) asymmetric encryption. In (a) the
symmetric key is used to both encrypt and decrypt the data. In (b) the public key is used to
encrypt the data, while the private key is used to decrypt it.

Two relevant symmetric-key algorithms are: DES and AES. The Data Encryption

Standard (DES) was developed by IBM in the ’70s and has been considered the standard

symmetric-key algorithm for about two decades [71]. The Advanced Encryption Standard

(AES) algorithm uses a block size of 128 bits and employs keys of three different lengths:

128, 196, and 256 bits. AES was published in 1998 and it has now taken over DES [69].

One of the most used asymmetric algorithms is RSA (Rivest-Shamir-Adleman), which

is based on the creation of a public key given two large prime numbers that should be kept

secret and whose product is very hard to factor [72]. The RSA algorithm is slow, therefore

it is usually used to encrypt shared symmetric-keys rather than for encrypting the data

itself.

2.1.8.4 Digital Signatures

A digital signature is a type of cryptographic algorithm used to ensure authentication,

non-repudiation and integrity over some data [73, 74]. Authentication allows to determine

whether the originator of the data is really whom he/she claims to be; non-repudiation

prevents the signer to deny that he/she was the one signing the content; and integrity, as
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previously explained in Section 2.1.8.2, verifies that the data has not changed since the

signature has been generated. The digital signature protocol consists of three steps:

• Key-generation of a private and public key-pair.

• Signing the content using the private key, resulting in a signature.

• Verification of the signature using the public key.

(a)

Signature
Clear 
Data

Hash data

Private 
Key

Hash 
Value

(b)

Clear 
Data

Hash data Hash 
Value

Signature Hash 
Value

Public 
Key

If the hash 
values are the 
same, then the 

signature is 
valid

Figure 2.2: A schematic of how digital signatures work. (a) shows the signing process for some
given data. First the data is hashed, using a cryptographic hash algorithm, and then the resulting
hash value is encrypted using the private key. The result is the signature for the clear data. (b)
shows the steps for verifying a given signature. The signature is decrypted using the public key of
the signer, then the result is compared with the expected hash value of the data. If the two hash
values are the same, then the signature is considered valid.

It is good practice to digitally sign the hash of the data rather than the data itself

(see the schematics in Figure 2.2). Signing the hash of the data is faster than using an

asymmetric encryption algorithm directly on the data. The RSA algorithm, for instance,

can only handle a limited amount of data. In addition, hashing the data first results

in a shorter digital signature, which is then easier to distribute. The Digital Signature

Algorithm (DSA) is an implementation of the Digital Signature Standard and the most

widely used digital signature algorithm [75].
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2.2 Data Management Systems

Data management and storage systems vary for their intrinsic properties, their archi-

tecture and what they are used for. The high number of types and implementations of

data management systems (DMS) limits the amount of them that can be described in

this thesis as well as the level of detail that can be covered. This section examines the

following classes of DMS, which have been selected based on the challenges described in

the Introduction Chapter and the system proposed in the The Sea of Stuff Chapter:

• File Systems

• Database Systems

• Version Control Systems

• Networked File Systems

• Cloud Storage Systems

• Object Storage Systems

For each of these classes of systems only the relevant level of detail is covered. For

example, database systems are described in terms of their data abstractions, rather than

their internal implementations. Similarly, networked file systems are described in terms

of their abstractions and interactions between their components, without any description

of the actual protocols involved. Thus, the remaining of this chapter should be consid-

ered as an introductory reading to storage systems. A similar approach has been taken

for the Literature Review Chapter. In order to keep the chapter concise, some storage

implementations belonging to the classes below have not been referenced or described and

some classes of DMS have not been included, such as content management systems, digital

management systems, or remote object models (e.g., CORBA27).

27Corba. http://www.corba.org/ [last visited on 25/11/2018)
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2.2.1 File Systems

The operating system (OS) is a software program that manages the computer hardware

as well as the software resources for the user applications. The majority of OS provide an

overlapping set of services: process management and coordination, memory management,

IO and storage management. The file system is a subsystem of the operating system that

provides data management over secondary storage.28

2.2.1.1 Files and Directories

Files and directories are the two most important file system user-level abstractions, or

metaphors.

Traditionally, the file is defined as “a collection of related information defined by its

creator [...]” and “files represent programs (both source and object forms) and data” [31, p.

26]. Alternatively, the definition of a file corresponds to the definition of data, so that a file

is simply a sequence of bits stored on some storage media. This second definition, however,

can be misleading as it merges together the concept of file with the one of data, and it does

not include the metadata information related to the file as well as the operations that can

be carried out over a file.

The user-level metaphor of a file consists of data, attributes, and operations. The

attributes define the metadata information used by the OS to describe the file and to

access the actual data. The two main attributes of a file are the name and the identifier.

The name is a human-readable string, known also as user-level textual name, which is

of use only to users and/or applications. The identifier, instead, is a unique identifier,

within the file system, for the file and is also known as system-level identifier. Section

2.1.2 discusses in more details the role of naming in storage systems, in particular the

relationship between naming and location.

The other attributes of a file are, but are not limited to: type, location29, size, pro-

28Secondary storage is non-volatile memory, not directly accessible by the CPU, which usually stores
large amount of data compared to primary storage, at the cost of slower IO.

29The location attribute contains information about the storage device where the file is stored and the
location within that device.
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(a) Terminal (iTerm2) file explorer via ls.
(b) MacOS (High Sierra, v. 10.13.3) Finder
in columns view.

(c) Nautilus file explorer for Scientific Linux
(v. 7.4 with GNOME 3.22.2) in icons view. (d) Windows 10 file explorer in icons view.

Figure 2.3: Example of some typical file explorers for different operating systems.

tection, and statistical information (e.g., time of last access or time of last modification).

These attributes, such as the location, size and protection are necessary for the operating

system to actually access the data and perform various file operations. The most important

file operations are: file creation, data writing and reading of a file, data search (seek), file

deletion, and file truncation.

The other user-level abstraction, common to many file systems, is the directory or folder,

which is used to impose a logical organisational structure for files and other directories

in a file system. A Unix-like directory is simply a file containing a table of symbols that

translates human-readable file names to the corresponding file identifiers or other directory

identifiers. Figure 2.3 shows some examples of files and directories as seen by users via file

managers (or file browsers) or a terminal window.
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2.2.1.2 File System Types

File systems can be classified in different ways. From a user perspective, files systems

can be classified by how files and directories are organised. From an implementation

perspective one might look at how the file system is actually implemented.

The most common organisation for files and directories, from a user-perspective, is the

hierarchical one (see Figure 2.4). In a hierarchical file system, entities are linked through

a path.

How Files are Organised

• Flat. In this type of file system all files reside at the same ‘level’ and no concept of

directory exists. All files have to be named uniquely. The implementation of a flat

file system is simple and it can be useful within embedded systems.

• Hierarchical. In this type of file system files are organised over multiple ‘levels’

through the use of directories. The hierarchical organisation of files and directories

often resembles a tree 30, but this is not always the case. For example, any file system

implementing the VFS (Virtual File System) can, and should, support symbolic links

which can break the acyclic property of trees. Figure 2.4 shows an example of a

hierarchical file system. This is the most common type of file system.

/

bin dev etc ... tmp usr

bash cat cp ... passwd bin local lib ...

Cellar man git ...

Figure 2.4: Example of a hierarchical file system structure.

30A tree is an undirected graph, with no cycles.
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How Files and Directories are Implemented

• Block-based. Data is stored in blocks which are grouped together by meta-structures,

like the inode in Unix systems. Block-based file systems are the focus of the rest of

this section.

• Database-based. A database is used to store files, their attributes, and how they

are organised. A database-based file system allows richer queries than traditional

file systems. The WinFS [76] and Oracle Database File System (DBFS)31 are two

examples of database-based file systems.

• Log-Structured. Data and its attributes are written sequentially to a log, which

is implemented as a circular buffer. Log-structured file systems provide good write

performance on sequential access storage, have easy-to-implement snapshotting32,

and support easy recovery from failures.

• Object-based. The file system uses an object storage device or an object storage

service to store its data and metadata. Section 2.2.6 discusses general object storage

in more details.

2.2.1.3 The Virtual File System

Unix systems provide a common abstraction for the supported file systems via the

virtual file system layer (VFS) [77, 78]. The VFS provides two main functions:

• It abstracts different file system implementations by providing a common coherent

interface for the OS.

• It allows files to be uniquely identified across the file system implementations (this

feature is particularly important for networked file systems).

31Introducing the Database File System. Oracle. https://docs.oracle.com/database/121/ADLOB/

adlob_fs.htm [last accessed on 28/11/2017].
32Snapshotting is a technique used to capture a particular state of a system at a given point in time.
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�le system interface

VFS interface

local �le system
type A

local �le system
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Figure 2.5: Schematic showing the interaction between the virtual file system and the actual file
systems. Illustration derived from [31, p. 469]

The diagram shown in Figure 2.5 illustrates how the file-system interface (which enables

file operations via system calls such as open(), close(), read(), and write()) interacts with

a local file system or a remote file system via the VFS. From the perspective of the file-

system interface there is no difference between a local or a remote file system, or between

two completely different local file system implementations.

The Windows operating systems abstract multiple file system implementations via the

Installable File System (IFS). This thesis does not cover the implementation details of the

IFS, but it should be noted that the IFS provides similar functionalities to the Unix VFS.

2.2.1.4 The File-Control Block

The file-control block (FCB) is the data structure of the file system that contains

information about the file [31]. A typical FCB contains the following information:

• File unique identifier.

• File permissions.

• Created time, last accessed time and last modified time.

• Owner, group and access control list (ACL).
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• File size.

• Data blocks and/or pointers to data blocks.

In the Unix operating systems the FCB is called inode. The inode represents the

building block for file systems of the Unix family. Each inode is uniquely identified by

its id (i ino) within the file system and there is exactly one inode for each file of the file

system. Code 2.3 shows a simplified inode data structure (see Figure 2.6 for a graphical

representation of an inode).33

s t r u c t inode {

umode t i mode ;

unsigned long i i n o ; // i d e n t i f i e s the inode

ku id t i u i d ; // user id

k g i d t i g i d ; // group id

l o f f t i s i z e ;

s t r u c t t imespec i a t i m e ;

s t r u c t t imespec i mtime ;

s t r u c t t imespec i c t i m e ;

const s t r u c t i n o d e o p e r a t i o n s ∗ i o p ;

b l k c n t t i b l o c k s ;

}

Code 2.3: Simplified inode struct. An example of a full inode struct can be found in the header

at the path include/linux/fs.h of the Linux kernel.

2.2.1.5 Symbolic and Hard Links

In most modern file systems, the acyclic property of a hierarchical file system is broken

by links. Links are “shortcuts” that are used to give the user (or an application) the

impression that a file exists in multiple locations. There are two types of links: hard

33The source code for the Linux kernel is available at the following link: https://github.com/torvalds/
linux [last accessed on 16/11/2017].
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mode node id uid gid size access 
Date

Data Block Pointers
Level of 

Indirection

Data 
Block

pointersmodify 
Date

create 
Date

inode 
ops

block 
count

...

0 1 2 30 0 0 0 0 0 0 0 0 0 0

Indirection 
Block

Indirection 
Block

Indirection 
Block

Indirection 
Block

Indirection 
Block

Indirection 
Block

Data 
Block

Data 
Block

Data 
Block

Figure 2.6: Schematic of the inode data structure.

links and symbolic links (sometimes referred as symlinks or soft links). The term hard

link is used to refer to the linking between a file name in a directory and an inode. In a

file system each file has at least one hard link, but multiple and independent hard links are

also allowed. Hard links are supported by Unix-like OS as well as the Windows NTFS [79],

but not by Windows file systems FAT [80] or ReFS [81]. A symbolic link, instead, is a

name pointing to an inode, which itself points to another inode.

The advantages of using hard links is that no difference exists between two hard links

pointing to the same inode, so for example if one of the hard links is deleted the other is

still valid. If it were a symbolic link, instead, this becomes invalid as it would point to a

no-longer existing entity of the file system. Hard links must exist only within the same

device and cannot be used for directories, while symbolic links can. In NTFS, links to

directories exist, even across different volumes, and are called junction points [82].
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2.2.1.6 Application Layer File Systems

The file systems that have been seen so far are implemented at the kernel layer, which

is a hard task. To avoid writing file systems at the kernel level, system designers can

choose to implement file systems in the user space with libraries such as FUSE (Filesys-

tem in Userspace)34 for Unix systems or Dokany (previously known as Dokan)35, WinFsp

(Windows File System Proxy)36, and Eldos CBFS (Callback File System)37 for Windows.

Within Unix systems, file systems built in the user space are known as user space file

systems, while in Windows systems they are sometimes called user mode file systems,

but for the purpose of this work we introduce a more generic term: application layer

file systems.

In this section only the FUSE library is going to be taken into account because of its

maturity and popularity. Other libraries provide similar properties and functionalities for

Unix or Windows operating systems, or both.

FUSE

The FUSE library consists of three main components: a kernel module (fuse.ko), a

user space library (libfuse.*) and a mount utility (fusermount). The mount utility allows

FUSE-based file systems to be mounted and unmounted.38 The kernel module mimics a

kernel file system and interacts with the VFS. The FUSE kernel module accesses the file

system implementation through the user space library, which in turns communicates with

the user defined file system. The diagram in Figure 2.7 shows the interactions between the

FUSE components and the OS in user space and the kernel space.

34libfuse. https://github.com/libfuse/libfuse [last accessed on 17/11/2017].
35Dokany. https://github.com/dokan-dev/dokany [accessed on 24/11/2017].
36WinFsp. http://secfs.net/winfsp/ [last accessed on 24/11/2017].
37Eldos Callback File System. https://sbb.eldos.com/cbfs/ [last accessed on 24/11/2017].
38Mounting is the process of attaching a file system to a directory (usually under the root directory /,

or under the directories /Volumes or /mnt) and make it available to the system.
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VFS

FUSE

NFS

Ext3

...

glibc

<cmd> /tmp/fuse

./prog /tmp/fuse

glibc

libfuse

Figure 2.7: Schematics of the FUSE library and its interaction with the VFS through the operating
system user space. Illustration derived from [83].

Examples of file systems built with FUSE are:

• GmailFS39, which uses Gmail to store data.

• MinFS40, which abstracts the Amazon S3 object store as a file system.

• SSHFS (SSH Filesystem)41, which provides access to a remote file system via SSH.

• WikipediaFS42, which allows access to Wikipedia as a file system.

• davfs243, which uses FUSE and a network library to provide resources on a WebDAV

server as a file system.

2.2.2 Database Systems

“A database is a set of data that has a regular structure and that is organised in

such a way that a computer can easily find the desired information” [84]. In other words, a

database is a collection of data records which are associated by some relevant properties,

or fields, and can be further associated with other records. For example, the database of

39GMail Filesystem over FUSE. https://sr71.net/projects/gmailfs/ [last accessed on 17/11/2017].
40MinFS. https://github.com/minio/minfs [last checked on 17/11/2017].
41SSHFS. https://github.com/libfuse/sshfs [last accessed on 17/11/2017].
42WikipediaFS. http://wikipediafs.sourceforge.net/ [last accessed on 17/11/2017].
43davfs2. http://savannah.nongnu.org/projects/davfs2 [last accessed on 24/11/2017].
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a registry office will have records about all the people of a specific area, with each person

having fields such as: name, surname, data of birth, place of birth, etc. The records can

then be queried using these fields, for example by querying all the people named ‘John’

and born before the year 1975.

Over the last decades several database models have been created, with the most relevant

being the following.

Flat. This is the simplest type of database model and it consists of a table with fields

mapping to records [85]. Flat databases are usually implemented as files. The /etc/passwd,

/etc/group, and /etc/hosts files in Unix systems are such examples.

##

# Host Database

##

1 2 7 . 0 . 0 . 1 l o c a l h o s t

255 . 255 . 255 . 255 broadcasthost

: : 1 l o c a l h o s t

1 2 7 . 0 . 0 . 1 t e s t−s e r v e r . co . uk

1 9 2 . 1 6 8 . 1 6 8 . 1 exte rna l−s e r v e r . com

Code 2.4: Example of an /etc/hosts file.

Relational. The relational database model is based upon records stored in multi-

ple tables and related to each other via special fields known as keys. The relationships,

constraints and keys of all the tables define the schema of the database. Examples of rela-

tional databases are: SQLite44, MySQL45, MariaDB46, Microsoft Access47, and Microsoft

44SQLite. https://sqlite.org/ [last accessed on 21/11/2017].
45MySQL. https://mysql.com/ [last accessed on 21/11/2017].
46MariaDB. https://mariadb.org/ [last accessed on 21/11/2017].
47Microsoft Access. http://office.microsoft.com/access [last accessed on 21/11/2017].
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SQL Server48.

A record is commonly associated to a row in a table and consists of a list of values.

Each value is of a specific type based on the ‘column’ (or field) it belongs. All records of

a table have the same number of values and the same value types per column. SQLite, for

example, supports five type classes: text, numeric, integer, real, and blob. Table 2.2 shows

the associated data types for each of the type classes. More advanced data types are also

allowed. For example, MySQL supports data types as: curve, geometry, point, enum, set,

etc.

Type class Data Type

Text

Character (20)
Varchar (255)
Varying Character (255)
Nchar (55)
Native Character (70)
Nvarchar (100)
Text
Clob

Numeric

Numeric
Decimal (10,5)
Boolean
Date
Datetime

Integer

Int
Integer
Tinyint
Smallint
Mediumint
Bigint
Unsigned Big Int
Int2
Int8

Real

Real
Double
Double Precision
Float

Blob
Blob
no data type specified

Table 2.2: Data classes and data types for SQLite Version 3.

48Microsoft SQL Server. http://microsoft.com/sqlserver/ [last accessed on 21/11/2017].
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Furthermore, some values of the record have special properties and are known as keys.

A relational database should support at least primary and foreign keys. A primary key

is the field of the record that marks it as unique within the table. In some cases, a primary

key can be composed by multiple fields and it is known as a composite primary key. A

foreign key is a field of a record that has a corresponding match with a record of another

table. Foreign keys are fundamental as they allow relations between records of multiple

tables to exist.

Object-oriented. Object-oriented databases are similar to relational databases, but

objects, instead of tables, are used to hold the records. Object-oriented databases integrate

well with object-oriented programming languages, such as Java, C++, Python, Objective-

C or Smalltalk, since they share similar types of abstractions. Hybrids between object-

oriented databases and relational databases also exists, such as PostgreSQL49.

The object abstraction consists of attributes, which define the characteristics of the

object, and methods, which define the behaviour of the object. An important property of

objects is that they consist of data as well as computation.

The object abstraction is used in storage solutions that would not normally be classified

as databases, such as orthogonal persistence storage systems [86, 87, 88], which are exam-

ples of object-oriented storage systems where objects are persisted for as long as required.

Moreover, objects could also be related one another, forming a graph of objects (see below

for graph database systems) and providing a better understanding of the data to users.

Document-oriented. A document-oriented model is one where records are stored as

documents (examples of encodings are: XML, JSON, YAML, or even the PDF document

format) and do not have any fixed schema. The capabilities and limitations of a docu-

ment data value depends on its format. Examples of document-oriented databases are:

MongoDB50, RethinkDB51, and Couchbase52.

49PostgreSQL. https://postgresql.org/ [last accessed on 21/11/2017].
50MongoDB. https://mongodb.com/ [last accessed on 21/11/2017].
51RethinkDB. http://rethinkdb.com/ [last accessed on 21/11/2017].
52Couchbase. http://couchbase.com/ [last accessed on 21/11/2017].
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{

"_id": 1,

"name": {

"first": "John",

"last": "Bond"

},

"age": 43,

"email": "john@bond.co.uk",

"profession": "Independent Contractor",

"partner": 108, // This is a reference value that points to another JSON document

}

JSON 2.5: Example of a JSON document data entity.

Graph. A graph database model is designed around the concepts of representing

records as nodes of a graph and relationships as edges between nodes. Relationships

always have a direction, a type and can also have a weight. Graph databases are very

useful when a non-rigid schema is required and semantic queries are involved. Examples of

graph databases or supporting a graph database are: Neo4j53, Microsoft SQL Server (2017

version), and OrientDB54.

In the node-edge abstraction, data is stored within nodes, while edges represent rela-

tionships between nodes. The node-edge abstraction is very generic and can be used also

between ‘documents’ that reference each other through reference values. The Resource

Description Framework (RDF) [89] data model is also based on the node-edge abstraction.

Key-value. The key-value database model is based on the simple concept of associating

a key to a value, the record. A key-value database is also known as dictionary or hash-

map. A key-value model is very simple and allows very fast read/write of records at the

cost of very expensive joins55. Key-value databases are usually in-memory databases with

53Neo4j. https://neo4j.com/ [last accessed on 21/11/2017].
54OrientDB. https://orientdb.com/ [last accessed on 21/11/2017].
55A join is the operation of combining records stored in different tables, documents, or objects by common

keys (also known as foreign keys in relational databases).
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persistence options. Examples of key-value databases are: Redis56 and memcached57. It

should also be noted that high-level programming languages, such as Python or Java, have

built-in support for key-value in-memory databases within their language (i.e., dictionary

for Python, hashmap and hashtable for Java).

Distributed. A distributed database is one where the data is distributed across mul-

tiple nodes. Examples are distributed databases are: Cassandra58, Amazon DynamoDB59,

or Voldemort60.

2.2.3 Versioning in Storage Systems

Versioning is the ability to track and manage data changes over time. This section

explores how data and versions are represented in storage systems and the most common

versioning operations.

The concept of versioning is often bound to Versioning Control Systems (VCS), such

as SVN [90], Mercurial61, and Git62, but it is a widely used technique in computing and

used in backup applications, content management systems, and digital asset management

solutions too. Section 3.3 describes the most relevant versioning systems in more depth.

2.2.3.1 The Version Metaphors

The version metaphor abstracts the data metaphor as it changes over time, so that its

evolution over time is preserved. The simplest version abstraction consists of the identifier

(or name) and the data of the version. The identifier should be unique across all the

versions of the entity. In some systems the identifier is incremental so that it is possible

to reconstruct the history of the entity by just looking at the names of the versions (see

Figure 2.8a), as in the RCS (Revision Control Software) system [91]. Alternatively, some

version abstractions store references to related versions of the entity (see Figure 2.8b), such

56Redis. https://redis.io/ [last accessed on 21/11/2017].
57memcached. https://memcached.org/ [last accessed on 21/11/2017].
58Apache Cassandra. https://cassandra.apache.org/ [last accessed on 22/11/2017].
59Amazon DynamoDB. http://aws.amazon.com/dynamodb/ [last accessed on 22/11/2017].
60Project Voldemort. http://project-voldemort.com [last accessed on 23/11/2017].
61Mercurial-scm. https://mercurial-scm.org/
62git-scm. https://git-scm.com/
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as in the git [92] and mercurial [93] version control systems.

1.0 1.2 1.3 2.1

1.2.1 1.2.2

(a) Versions are associated with incremental version numbers that reflect the
relationship between the different points in time.

ABA EFE 2CC F1B

09B

Prev: ABA Prev: EFE

Prev: EFE

Prev: 2CC

(b) Versions with unique identifiers and storing references to related (previous)
versions.

Figure 2.8: Diagram showing two different ways of organising multiple versions for a given ver-
sionable entity. The arrows indicate the relationships between the versions.

2.2.3.2 Versioning Terms and Operations

This section lists the common terminology used for versioning system and throughout

this thesis.

• Repository. This is where all the versioned content is stored.

• Local working copy. This is a local copy of the repository. Its contents are changed

until committed to the repository.

• Remote repository. This is a repository stored on a remote node, in relation to

the local node.

Even thought the operations supported by systems providing versioning can vary, all

such systems usually provide the following common operations:
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• Initialisation. The system initialises a given location within the storage system and

starts tracking changes within that location. The initialised location is usually called

a repository or depot. Some systems allow repositories to be located in multiple

machines.

• Snapshot or commit. The current state of the repository is stored by the storage

system for later use. Each snapshot is uniquely labelled within the history of the

repository.

• Update. Copies the contents of a snapshot into the local working copy.

• Pull. This is the operation of retrieving the latest snapshots from a remote repos-

itory. The first pull of a repository is often associated with the initialisation of the

local repository (clone operation).

• Push. This is the operation of updating a remote repository with the local snapshots.

• Branch. The repository is copied locally so that its contents can evolve differently

from the original repository. Branches play an important role when multiple end-

users collaborate over a repository. When a system does not allow branching, then

content is versioned linearly.

• Merge. This operation involves the merging of two branches. The conflicts origi-

nating from a merge should be resolved manually or by the provided tools.

• Revert. The system enables end-users to revert the state of the repository to an

arbitrary snapshot.

• Log. The system provides a list of all the available snapshots (the history of the

repository).

The operations above, however, may not be supported by all systems that provide

versioning. For example, Apple’s Time Machine and ZFS do not provide any support for

branching and merging.
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2.2.4 Networked File Systems

A networked file system is an implementation of a file system that involves a client and

one or more servers, with the servers storing and managing the actual file system and the

client remotely accessing it through the server and acting upon its files and directories as

if it were a local file system. Networked file systems have existed for decades in a variety of

forms, from client-server to peer-to-peer file systems. However, networked file systems are

not always clear and easy to categorise [94, 95, 96]. In this thesis we propose the following

categories:

• Client-server file systems (CSFS): one or more clients have access to the file

system of a remote server (or multiple servers that appear to be as one).

• Clustered file system (CFS): the file system is managed by a pool of multiple

servers with a “shared-disk” model. In a “shared-disk” model, the disk of a server is

accessible to all other servers. The physical boundaries of a clustered file system are

transparent to users.

• Shared-nothing file system (SNFS): the file system is built as a pool of multiple

servers with a “shared-nothing” model. In a “shared-nothing” model, each server

can access only its own disks.

2.2.4.1 Client-Server File Systems

The main goal of a CSFS is to provide remote storage, known as network-attached

storage (NAS), while ensuring transparency over the remote data, so that users perceive

the remote file system as a local file system. CSFS are characterised, mainly, by the

namespace, the service type, and the data access model.

The namespace can be of two types: per-client, each client uses its own naming sys-

tem; and global, each client uses the same common naming space. The service type can

be either stateless or stateful. In a stateless service the client’s requests to the server are

self-contained; while in a stateful service the requests are shorter since the server stores

49



Chapter 2. Background

information about the client’s requests through time. A stateless service requires more

expensive network requests, but its design is simpler to implement, it is resistant to server

failures, and the server does not need to keep any in-memory storage. A stateful service,

instead, has a more complex design, but it allows cache coherency, performance improve-

ments via caching, and file locking. The data access model characterises the interactions

between the components of a CSFS. There are two model types: the remote access

model and the upload/download model. In the remote access model the server is ac-

cessed on each file operation (i.e., open, close, read, write, etc.). The remote access model

is easy to implement, but its simplicity comes with a network overhead that can result

in poor performance for most use cases. The network overhead, however, is compensated

by the ability of the model to serve the client only with the data that is needed, which is

especially useful for large files. In the upload/download model, instead, the file is cached

in the client and upload/download requests with the server are performed asynchronously.

Caching the data results in faster IO when operating on the data, compared to the remote

access model. Managing big files with the upload/download model is expensive, since the

entire file must be moved from/to the server.

Client Server

FileRequests from 
client to access the 

file

File does not 
leave the server

(a) Remote access model.

Client Server

File

File

File Old

New

Download

Upload

Local copy of 
the �le

(b) Upload/download model.

Figure 2.9: Diagrams derived from [32, p. 492].

Examples of CSFS are: the Network File System (NFS) [97], the Andrew File System

(AFS) [98], and the Microsoft Server Message Block (SMB)/Common Internet File System

(CIFS) (CIFS is a type of SMB protocol) [99, 100]. The NFS provides a stateless service,
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implements a remote access model, and has a per-client namespace.63 The AFS implements

a stateful service, supports the upload/download model, has a global namespace, has built-

in data replication mechanisms, and a built-in authentication protocol. SMB, which has

seen improvements over the years, implements a stateful service and supports the remote

access model with the ability to cache data locally, and a namespace that is local to the

nodes of the system.

2.2.4.2 Clustered File Systems

A clustered file system is defined as a non-local file system built as a pool of multiple

servers with a “shared-disk” model. A CFS uses a storage-area network (SAN) to allow

multiple servers to share the same storage at the block level. The diagram in Figure 2.10

is a simplified example of two servers that communicate with each other via a private

connection and share the same disk. The two servers, however, appear as one to the client

which accesses it through a public cluster connection.64 A CFS must adopt a concurrency

control model to avoid multiple clients modifying the data inconsistently.

A clustered file system can present some important design issues:

• Single point of failure (SPOF) on the shared disk.

• Concurrency control model’s complexity is directly proportional to the number of

clients accessing the CFS.

Examples of clustered file systems are Lustre [106], the Oracle Cluster File System

(OCFS2) [107], and GFS2 [108].

2.2.4.3 Shared-Nothing File Systems

A distributed system is commonly defined as “a collection of independent computers

that appears to its users as a single coherent system” [32]. In a distributed system we often

have multiple servers under a shared-nothing (SN) model, where nodes are independent

63New versions of the NFS have been released over the years, each improving the design of the predecessor.
These are the NFSv3 (RFC 1813 [101]) and the NFSv4 (RFC 3010 [102], RFC 3530 [103], RFC 7530 [104]).

64A public cluster connection can also be setup through one of the cluster nodes, which is then called
the master node.
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Client Client

Public Cluster Connection

Client

Server
Node 1

Server
Node 2

Private Cluster Connection

Shared Disk

Figure 2.10: Clustered File System schematics, derived from [105].

in order to eliminate any SPOF, favouring fault-tolerance and self-healing. A SNFS is

one application that can be run over a distributed system and can be defined as a file

system shared across distributed independent components of the system. Shared-nothing

file systems are usually known as “distributed file systems”, but the SNFS naming better

reflects the architecture of the file system, while the DFS naming can be confused with the

CSFS and CFS.

SNFS can be either asymmetric or symmetric. In a symmetric SNFS, all nodes are

equal (i.e., they have the same potential capabilities) and they are known as peers. The

mechanism behind this design is simple: if one peer needs data, other remote peers are

questioned about it until the data is found and retrieved. Symmetric SNFS are also known

as peer-to-peer distributed file systems (P2P-DFS). In an asymmetric SNFS, instead, some

nodes are more important than others or simply have different roles, irrespective of their

importance. This architecture is also known as the client-server architecture, where there

are nodes serving the data (i.e., servers) and nodes requesting it (i.e., clients).

Understanding the client-server architecture is fundamental to understand not only

asymmetric SNFS, but also symmetric SNFS. In fact, even though some nodes may play

both the client and the server roles (this is especially true in the case of P2P systems), the
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overall system can still be observed and studied as a client-server architecture.

In any client-server SNFS there are two primary services: the name server and the

cache manager. The name server resolves the name-location mapping, while the cache

manager stores data locally, so to avoid future network requests and reduce drastically data

access, resolving inconsistencies between nodes (Figure 2.11 shows how the cache manager

is used to reduce data access latency).

Is 
data in the 

cache?

Is 
data in the 
local disk?

Send request to 
�le server

Return data to 
process

Process requests 
access to data

Client Server

Load data to 
cache

Is 
data in the 

cache?

Load data to 
cache

Read data from 
disk

Read data from 
disk

Send data to 
client

Yes

Yes Yes

No

No

No

Figure 2.11: This diagram shows the role of the cache manager in the client and the server within
a shared-nothing file system. Diagram derived from [109, p. 201]

The size of a SNFS is usually described in terms of the number of nodes composing

it, which can variate from a minimum of two nodes to millions and more. Very large

SNFS are usually called global file systems. Examples of SNFS are the Hadoop File Sys-

tem [110], the Google File System [111], Oceanstore [112], and the InterPlanetary File

System (IPFS) [113].
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2.2.5 Cloud Storage

Cloud computing is a recently coined term used for distributed systems that provide

on-demand service. The proper definition of cloud has been, and still is, debatable [114,

115, 116, 117, 118]. In the seminal book “Cloud Computing - Principles and Paradigms”,

by Buyya et al., the authors suggest that irrespective of what definition of cloud one decides

to use, cloud computing should have the following properties:

1. Pay-per-use: users should be able to easily release resources and be billed only for

the services used.

2. Storage and computation elasticity: users should have the illusion that the

cloud service provides infinite storage and computation capabilities at any time.

The provision of resources should adapt automatically to the load on the service or

application.

3. Self-service interface: the services provided should be easy to use, set-up and

manage, without any human intervention from the cloud provider.

4. Abstraction or virtualisation of the resources: users should not be aware of

the hardware and network infrastructure and complexity of the provided service [22,

p. 4; pp. 16-17].

Cloud services are divided into three categories based on the abstraction level of the

service provided: Infrastructure as a Service (IaaS), Platform as a Service (PaaS), and

Software as a Service (SaaS) [22].

IaaS provides high-level APIs over the low-level components of the cloud infrastructure.

Examples of IaaS storage are Amazon S3 [20], Amazon DynamoDB [119], DigitalOcean

Spaces [120], and Rackspace Cloud Object Storage [21].

PaaS, instead, consists in providing users with a platform to develop, run, and/or man-

age their applications. In PaaS, storage is provided as part of the platform and examples
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are AWS Elastic Beanstalk [121], Heroku [122], and the Google App Engine [123] which

allow easy deployment of applications.

Finally, SaaS are applications that ‘live’ in the server side. Well-known examples of

SaaS storage applications are Dropbox [18], OneDrive [19], Google Drive [124], and Back-

blaze [125].

2.2.6 Object Storage

In object storage solutions, data is represented as objects, which are composed of three

components: the data itself, a unique identifier and any associated metadata [126, 127].

The unique identifiers used for objects are part of a flat global namespace, making object

storage very scalable. The flat structure also makes data creation and retrieval easy and

efficient operations, especially for very large amount of unstructured data. On the other

hand, however, applications relying on object storage need to maintain a naming service

to resolve human-readable names to the unique identifiers of objects.

Object storage is particularly common in IaaS cloud storage services, such as Amazon

S3 or Rackspace Cloud Object Storage.
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Literature Review

This chapter provides a literature review of the related work relevant to the design

of a storage system that reflects the properties presented in the Introduction Chapter.

The literature review is organised by types of storage systems, as defined in the previous

chapter. It should be noted that some of the systems presented in this chapter can belong

to more than one type of storage system.

3.1 File Systems

File systems are the most commonly known and used storage abstractions of the last

six decades. The concepts introduced in Section 2.2.1 are the foundation of most file

systems. This section briefly summarises the most relevant concepts of the state of the art

in file systems, while a more thorough literature review for non-local storage systems, from

networked file systems to P2P storage, is reported in the rest of the chapter.

The file metaphor, as defined in Section 2.2.1.1, groups together data, attributes, and

operations. The attributes are metadata that provide access to the data, access control,

and additional information to the operating system. The basic operations over files are:

file creation, data writing, data reading, deletion, and file truncation. Section 2.2.1.1 also

defined the directory metaphor, an entity that aggregates files and/or other directories.

Harper et al. [14] question what a file is, stating that the file abstraction is not properly

understood because it has been overused across many different systems and use cases over

the years. The authors propose to challenge the file abstraction and rethink the attributes

and actions that are related to it. In particular, their work questions the meaning of
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actions such as save, copy, and delete within systems that are distributed across multiple

end-points and users. The role of metadata, whether intrinsic or extrinsic to the file, is

also not very well understood, while being very important to users. For example, should

a copy operation be performed only on the data or also on its metadata? Who should be

allowed to perform copy operations? And how can multiple copies be perceived as being

the exact same identity, but replicated across multiple locations?

This section describes two different approaches that have been attempted over the

years to improve the file metaphor: extending the support for intrinsic metadata (see

Section 2.1.3 for the different types of metadata) and tagging files.

3.1.1 Extended Attributes Support

Extended attributes are structured metadata associated with the file structure and

used to provide richer information about the file. Mogul [128] was one of the first to

propose a mechanism to enrich files with additional properties, which were stored in an

ad-hoc database that could answer complex queries about the files, such as “what files were

modified last month?” and “what programs depend on the graphics package library?”.

Extended attributes are now supported by a large number of file systems (e.g., ext2-3-4,

ReiserFS, Btrfs, Lustre, FAT, NTFS, etc.) to record additional information about files,

such as their provenance, and to improve file searches. File search applications, such as

Spotlight65 and Alfred66, use extended attributes to provide better search features.

An alternative approach to store extended attributes within the file structure is adopted

by Apple’s HFS and HFS+, where files consist of two components: the data fork and the

resource fork [129, pp. 121-125]. The former is the actual file’s data, while the latter

contains any additional structured metadata that can be used by users and/or applications

to understand better the data or to improve some of the system features.

A third alternative to model files with richer metadata consists of creating metadata

indices. The Be File System [130] and the Haiku File System [131], for instance, implement

65Apple - Use Spotlight on your Mac. https://support.apple.com/en-gb/HT204014 [last accessed on
05/04/2018].

66Alfred - Productivity App for Mac OS X. https://alfredapp.com/ [last accessed on 05/04/2018].
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an indexing mechanism at the kernel level to record any metadata associated with files.

Indices can later be used to perform queries on files. Both systems also support ‘live’

queries, where results are updated automatically over time without the users having to

trigger the query explicitly. Two disadvantages of this approach are that the process of

indexing can impact significantly the overall IO performance of system and that the number

of indices may grow very quickly as more metadata attributes are recorded.

3.1.2 Tagged Files

A second approach to enhance the file metaphor is via tagging [132]. Tagging is also

supported by MacOS [133], but as a component of the OS external to the file system

implementation. A tag is a named key that can be associated with a file or a directory and

that aids users to easily find and aggregate files. Moreover, multiple tags can be associated

with a given file or directory.

The Resource Description Framework (RDF) is a metadata model that allows resources

to be related — or tagged — by specifying triples of the form (subject, predicate, ob-

ject) [134]. In RDF, resources — subjects and/or objects — are related by the predicate.

A typical RDF example is “The sky has the colour blue”, where “The sky” is the subject,

“has the colour” the predicate, and “blue” the object. When applied to a file system, files

and directories can be subjects, while predicates and objects can be literals or references

to other files and directories (for objects only). The pStore file system [135], for example,

uses RDF to record schema-less metadata about files and directories.

3.2 Networked File Systems

Section 2.2.4 defines networked file systems and the different categories they can be-

long to: client-server file systems, clustered file systems, and shared-nothing file systems.

Client-server and clustered file systems are designed to work within distributed systems

of small/medium size. For the purpose of this thesis, only shared-nothing file systems

(SNFS) will be described in detail. SNFS scale over thousands of nodes and are capa-

ble of managing petabytes, or even exabytes, of data. The systems taken into account
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are the Hadoop File System [110, 136], the Google File System [111], and the metadata

management approach used in GlusterFS [137].

Networked file systems can also be used to provide cloud storage, as discussed later in

Section 3.4.

3.2.1 The Hadoop File System and Google File System

The Hadoop File System (HDFS) and Google File System (GFS) are shared-nothing

file systems (see Section 2.2.4.3) designed to serve very large unstructured data with low

latency, high availability, high scalability, and high resiliency. The GFS is a proprietary

solution originally designed by Google in 2003, which then inspired the development of the

open source HDFS (Apache License 2.0). The HDFS and GFS are designed to be used by

other applications and/or services, rather than by user machines.

3.2.1.1 Files, Metadata, and Blocks

Both HDFS and GFS implement the file and directory metaphors used by standard

file systems (see Background Chapter) in similar ways. Files are typically in the order of

gigabytes or terabytes and they are chunked into smaller blocks67 (by default the maximum

size of a block is 64MB on GFS and 128MB on HDFS), which are uniquely identified by

IDs and replicated across multiple storage nodes. In the HDFS, blocks are stored together

with their corresponding checksums, so that the integrity of the blocks can be verified. On

the GFS, a block is chunked into smaller sub-blocks of 64KB and checksums are stored for

each sub-block.

The file name, the number of replicas stored, and the IDs of the blocks constitute the

metadata of a file. Unlike common Linux file systems, directories are not inodes mapping

content names to other inodes, but they are simply represented by the files’ names.

3.2.1.2 The Client, the Coordinator, and the Datastore

The architecture of the HDFS and GFS systems is based on three types of nodes:

• The Client is any node that wants to write or read data to/from the file system.

67Blocks are called chunks in the GFS.
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• The Coordinator — Master in GFS and Namenode in HDFS — is responsible for

storing metadata information about files, such as their filename, the blocks they are

made of, the number of replicas, and where replicas are stored. The coordinator

is also responsible for handling access control over the data and for monitoring the

status of the datastore nodes. The coordinator triggers any repairing mechanisms

when datastore nodes fail.

• The Datastore — Chunkserver in GFS and Datanode in HDFS — is responsible

for storing the data blocks.

Figures 3.1a and 3.1b illustrate the architecture components and their types of inter-

actions for the GFS and the HDFS, respectively. There are some important design choices

that allow HDFS and GFS to scale to hundreds of thousands of machines and to store

petabytes of data:

• The metadata managed by the coordinator is kept small, so that it can be stored in

memory and provide low latency access to client and datastore nodes. The HDFS

and GFS are meant to be deployed on networks with very low latency, such that even

the node disk latency can have an impact on the overall performance.

• The client writes data directly to the datastore nodes, so that the coordinator does

not become a bottleneck.

• Replication is handled by the datastore nodes, reducing the communication with the

coordinator, which could become a bottleneck in the system.

• The coordinator acts as a load balancer for the datastore nodes.

• Blocks, or chunks, are stored together with checksums, so that the integrity of the

data is verified before it is returned to the clients.

The GFS was upgraded around the year 2010 under the name of Colossus [139, 140],

but only limited information about its design is known, since no related papers have been
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Figure 3.1: (a) GFS architecture - diagram derived from [111]; (b) HDFS architecture - diagram
derived from [138].
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released yet. In GFS, the coordinator is a single point of failure (SPOF), while Colossus

supports multiple coordinator nodes, thus having no SPOF. Moreover, Colossus supports

erasure coding by implementing Reed-Solomon (see Section 2.1.6.2), so that storage space

is reduced while having better resiliency.

New versions of HDFS have been released over the last decade [141]. The new versions

of HDFS have introduced two main features to store replicas more efficiently and provide

better resiliency: erasure coding over the stored blocks and multiple coordinator nodes, to

avoid the coordinator being a single point of failure. By default, HDFS implements the

Reed-Solomon erasure coding, but more efficient coding techniques can also be used [54].

One of the main functions of a shared-nothing file system, like HDFS and GFS, is to

store metadata and data separately, so that the system does not have bottlenecks on the

metadata end-point and can operate with very large quantities of data. This also results

in simpler metadata management. However, the amount of metadata increases with the

amount of data stored in the system, such that eventually multiple coordinator nodes may

be needed. Handling multiple coordinators increases the complexity of the system and the

time for clients to retrieve metadata relative to a given file.

3.2.2 GlusterFS

GlusterFS is an open source (GPLV2 and LGPLV3+) [137] shared-nothing file system

designed to manage small-medium size files, and usually used to provide cloud storage ser-

vices. One of the main architectural features of GlusterFS is its elastic hashing algorithm,

which allows content to be distributed without the need of a metadata service. Thus,

GlusterFS does not maintain any index to keep track of where files are stored. The elastic

hashing algorithm consists of deterministically determining the location of a file based on

the hash of its path, as shown in Figure 3.2. The algorithm is said to be elastic because

it can adapt to changes in the number of nodes in the network. Replication and content

reliability are achieved via RAID and the abstraction of the physical storage via logical

storage volumes.
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Figure 3.2: GlusterFS architecture. The diagram shows how files are distributed based on the
hash of their path.

3.3 Versioning in Storage Systems

Versioning is the process of tracking and managing data as it changes over time. This

section explores how different storage systems or versioning tools provide versioning. The

concepts and terminology introduced in Section 2.2.3 are necessary to understand the

mechanisms and systems presented below.

3.3.1 Manual Data Versioning

The most basic versioning technique consists of manually creating file duplicates, each

representing a different version (see Figure 3.3). Manual data versioning is easy to achieve,

understand, does not require any additional tools, and is also used by most end-users.

Manual versioning also presents some important limitations:

• The relationship between versions is not always clear and it can become hard to

understand how content has evolved over time.

• The naming convention is arbitrary, error-prone and hard to adapt to future require-

ments.

• It is hard to share versions with other users while adopting the same versioning
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semantics.

• There is no clear rule on the granularity of the versions.

Version control systems, such as git or mercurial, are better solutions since they have

been designed specifically to version content (see Section 3.3.3).

phd

Thesis draft.docx

Thesis 1.docx

Thesis 2.docx

Thesis final after viva.docx

Viva

Thesis final.docx

Notes from examiners.txt

Notes.txt

Notes from supervisor 1.txt

Notes from supervisor 2.txt

Figure 3.3: Example of manual data versioning.

3.3.2 Versioning in Backup Applications

Backup applications, or services, are solutions that store and manage data so that users

can recover previous versions of their data and/or recover lost content if the local storage

fails. This section discusses data versioning within backup applications through Apple’s

Time Machine, which is discussed in more detail below.

Some cloud storage backup solutions are Tarsnap68, Backblaze69, and iDrive70. Data

backups can also be achieved using data synchronisation applications, such as rsync71 and

Syncthing72.

68Tarsnap - Online backups for the truly paranoid. https://tarsnap.com [last accessed on 22/04/2018].
69Cloud Backup: Easy, Secure Online Backup - Backblaze. https://backblaze.com/cloud-backup.html

[last accessed on 22/04/2018].
70IDrive Cloud Backup. https://idrive.com/ [last accessed on 22/04/2018].
71rsync. https://rsync.samba.org/ [last accessed on 20/03/2018].
72Syncthing. https://syncthing.net [last accessed on 16/03/2018].
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3.3.2.1 Apple’s Time Machine

Time Machine is a backup solution built-in with Apple’s operating system since Mac OS

X Leopard (version 10.5) [142]. Time Machine backs up the local file system periodically to

external disk drives.73 Time Machine provides versioning by storing incremental backups

of the local disk. At each snapshot, files and folders are copied to a backup storage unit,

while maintaining the same hierarchical structure of the local file system. Snapshots are

stored in folders that are named as following:

yyyy-MM-dd-HHmmss

Files that do not change across the backups are de-duplicated by creating hard-links

to the original files, as shown in Figure 3.4.

File
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File
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File
B

File
B

2018-03-28-115026

2018-03-28-162501

Ti
m

e

File
A

File
B

File
A’

Figure 3.4: Time Machine’s storage model. The file B in the second backup (user-view) is a
hard-link to the file B as represented in the system view.

When no external disk drive is connected to the machine, Time Machine creates tem-

porary backups that are stored on the local disk drive. These temporary backups are

eventually copied to the external disk drives. Time Machine also deletes intermediate

backups over time, so that space can be saved over the backup disks.74

73External storage units can also be connected over the network.
74Time Machine keeps all hourly backups of the last 24 hours, daily backups of the last month, and

weekly backups until the disk is full. Then, Time Machine keeps deleting the oldest backups.
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In addition, Time Machine provides a user friendly interface to interact with the back-

ups and revert the state of a particular file, folder, or the entire local disk to an arbitrary

snapshot (see Figure 3.5).

Figure 3.5: Screenshot of the Time Machine’s user interface (see Image Credits).

3.3.3 Version Control Systems

Version control systems (VCS) are data management systems designed to track versions

of a particular repository — often consisting of source code — over time. This subsection

describes the difference between centralised and distributed VCS, introduces the Merkle

data structure, which has become an important element of many VCS, and then focuses

on the two most popular distributed VCS: git and mercurial.

3.3.3.1 Centralised and Distributed Version Control Systems

One way of categorising VCS is based on their architecture, which can be either cen-

tralised or distributed. The architecture of centralised VCS consists of a single central

repository, with clients managing a partial copy of the repository and committing/updat-

ing changes from/to the central repository only (see Figure 3.6a). Examples of centralised

version control systems are the CVS [143] and SVN [90] systems. In a distributed VCS,
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there is not a central repository acting as the only source of truth, but rather all the ac-

tors, or peers, involved have a full copy of the repository and can pull/push their changes

from/to any other peer (see Figure 3.6b). Often, however, peers agree upon having one

of the repositories acting as the main source of truth (e.g., GitHub75, BitBucket76, or

GitLab77 are all services providing support for git and/or mercurial and often act as the

central repositories for projects). Examples of distributed version control systems are git,

mercurial, and bazaar [144].
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Figure 3.6: Diagram showing the architecture of centralised and decentralised version control
systems. All peers in (b) can have a working copy, as shown for Peer 2.

In distributed VCS, end-users can commit changes locally, while in centralised VCS the

changes have to be synchronised with the central repository. As a result, in a distributed

VCS it is possible to operate over a repository independently of all the other peers involved,

except for the push/pull operations that require peers to communicate. However, managing

very large repositories - in terms of bytes stored and/or number of files managed - is more

efficient in centralised VCS, since the clients manage only the relevant content of the

75GitHub. https://github.com [last accessed on 23/04/2018].
76BitBucket. https://bitbucket.org/ [last accessed on 23/04/2018].
77GitLab. https://about.gitlab.com/ [last accessed on 23/04/2018].
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repository, while the same is not true in distributed VCS.

For the purpose of this work, only decentralised VCS will be discussed further.

3.3.3.2 The Merkle Tree

A Merkle tree is a tree data structure in which leaf nodes contain the hash of a given data

block and internal nodes contain the hash generated by hashing the hashes of their children,

as shown in Figure 3.7 [145, 146]. A Merkle tree has three important characteristics:

1. Its nodes are content-addressable via their hashes. As a result, nodes can be dis-

tributed and accessed independently of their locations.

2. The hash of a node can be used to verify the integrity of the content it refers to,

which can be either data blocks or other nodes.

3. Nodes can be de-duplicated if they are addressable by the same hash values.

Root Hash
hash(Hash 0 +     

Hash 1)

Hash 0
hash(Hash 00 +     

Hash 01)

Hash 1
hash(Hash 10 +     

Hash 11)

Hash 00

hash(L1)

Hash 01 Hash 10 Hash 11

hash(L2) hash(L3) hash(L4)

L1 L2 L3 L4

D
at

a 
B

lo
ck

s
Le

af
 N

od
es

In
te

rn
al

 N
od

es

Figure 3.7: Example diagram of a Merkle tree. The arrows indicate the input data used to
calculate the hash of a node.
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3.3.3.3 Git

Git is an open source (GNU GPL v2) distributed VCS designed primarily to manage

source code, but it can be used to control versioning for any type of file [92].

The Git Data Model

The git model consists of two main data structures: a mutable index, storing all the

relevant information about the working directory, and a collection of first-class immutable

objects, which evolves over time as content from the working directory is committed. The

immutable objects can be of four types and constitute the core of the git data model (see

Figure 3.8):

• The blob (binary large object) object stores the data of a particular version of a file.

The blob consists of the bytes that make up the file plus some metadata necessary

to identify and read the blob.

• The tree object aggregates blobs and other trees together by reference. A given

snapshot of a repository is represented by a single tree.

• The commit object links trees together forming the history of a repository. A

commit stores a references to a given tree (snapshot), a reference to zero or more

previous commits, a timestamp, a string for the author and the committer (e.g., this

is usually an email address)78, and an arbitrary message.

• The annotated tag is an object containing a reference to a commit of the repository.

Annotated tags are used to label and record particular snapshots of the repository.

All objects described above are identified by a SHA-1 hash79, which is derived from

the contents of the object. The objects are linked together by reference and form a Merkle

78Chacon and Straub define the author and committer as following: “the author is the person who
originally wrote the work, whereas the committer is the person who last applied the work” [147].

79The git community is currently working on transitioning git to use a stronger hash function
as suggested here: https://github.com/git/git/blob/0afbf6caa5b16dcfa3074982e5b48e27d452dbbb/

Documentation/technical/hash-function-transition.txt [last accessed on 20/03/2018]

70

https://github.com/git/git/blob/0afbf6caa5b16dcfa3074982e5b48e27d452dbbb/Documentation/technical/hash-function-transition.txt
https://github.com/git/git/blob/0afbf6caa5b16dcfa3074982e5b48e27d452dbbb/Documentation/technical/hash-function-transition.txt


3.3. Versioning in Storage Systems

tree. The objects of the git model are content-addressable and their hashes can be used to

verify the integrity of the repository.

Tree 

Blob

Commit

Tag

Figure 3.8: Git data model.

Second-Class Objects

Second-class objects are entities derived from the model described above. In git, second-

class objects are used to annotate the git model, thus enabling better navigation of the

Merkle tree. For instance, the branch object maps the name of branches to the relevant

commits in the model. The head is a reference to the branch a user is currently on.

Annotated tags also have their respective second-class objects, so that they can be easily

found and retrieved.

Git Internals

Figure 3.9 shows how the content versioned by git is stored internally. First-class

objects are stored all in the same location, under .git/objects/, while second-class objects

are stored under .git/refs as references to commits or annotated tags.

Git uses three techniques to efficiently store objects:

• Compression. All objects are compressed to save space.

• Chunking. Large files are stored into multiple chunks (i.e., blobs) and grouped

together using trees. As a result, when a large file changes only the changed chunks

are stored, while all other chunks are de-duplicated.
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• Packing. Most objects, including blobs, are smaller than the file system block size

(blocks are usually of 4KB, 8KB, or 16KB). Thus to avoid wasting block space,

objects are packed together into a single file.
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Figure 3.9: Git internal model. Each git repository has a .git/ directory. This diagram shows
how and where the first-class and second-class objects of the git model are stored within the ./git
directory.
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The Git Notes Model

Git provides support for metadata via the commit objects, described earlier, and the

git notes model. The git notes model allows users to write metadata as notes and asso-

ciate them with arbitrary commits of the repository, without changing the history of the

repository. A note is an arbitrary sequence of bytes — usually text — that end-users use

to describe a commit. The notes model uses the first-class objects of the git data model

described earlier, but in a slightly different way (see Figure 3.10):
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Figure 3.10: Git notes model.

• The blob object contains the actual note.

• The tree object aggregates all the notes at a particular time in the repository history.

Each entry in the tree is a reference to the note, while the name of the reference is

itself a reference to the commit, from the data model, that is being annotated.

• The commit objects aggregate the history of all the notes of the repository.

Figure 3.11 illustrates graphically how the git notes model is used by example.
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Figure 3.11: Example of git-notes.

3.3.3.4 Mercurial

Mercurial is an open source distributed VCS that shares the same scope and goals

of git, but has a different data model design [93]. Git works by storing the state of the

repository at each commit, while mercurial versions content incrementally, by storing data

changes (deltas). The implications of the mercurial approach are discussed below.

The Mercurial Data Model

The mercurial data model is based on three types of first-class entities:
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• The file is equivalent to the file abstraction used in file systems. A file also contains

a reference to the changeset it belongs to, so that it is possible to know to what

particular point in time of the repository this belongs to.

• The manifest defines the state of a repository at a given time. The manifest contains

references to all the files of the repository at a given snapshot, their permissions, and

their logical locations.

• The changeset records the changes of the repository in relation to the previous

changeset.
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Files

File A

File B
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Figure 3.12: Mercurial data model.

Each entity also contains a reference to its previous versions, if any. The data structures

used by mercurial are described in the next subsection.

Mercurial Internals

In mercurial, each entity — whether of type file, manifest, or changeset — is recorded

within a revlog. The revlog is an index data structure of fixed-size records for each

managed entity. There are three types of revlogs:
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• The file revlog. There is one file revlog per file, with each revlog storing all the

versions of a file. Each version is identified by a nodeid, which is the hash of the

content of the file and the two parents it originates from.80 Small files are stored

directly in the file revlog, while large files are stored separately.

• The manifest revlog. This defines the state of a project at a given time by listing

each file and its nodeid, which identifies the version of the file within its revlog (see

Snippet 3.1)

• The changeset revlog. This is an index of all the files changed at a particular

commit, plus the date of commit and a reference to the committer (see Snippet 3.2).

The most important difference between the mercurial and git model is that mercurial

stores only the differences, or deltas, between files (file revlog) and repositories (changeset

and manifest revlogs). Therefore, retrieving a particular version of a file involves getting

the original file and then applying the appropriate deltas. As the history of a file grows,

reading becomes slower. As an optimisation step, mercurial occasionally stores the entire

content of a version, reducing the number of deltas to apply.

1 $ hg --debug manifest # outputs the current manifest

2 3f1854bbbc477130128ba81df0637a1ee1a96083 644 README

3 c6f503126dbe9f7d787b030fa8428dc36bce4b3c 644 documentation/CS4099___Final_Report.pdf

4 0bbac2bc381c2a7d951015c636ab6da09e99fe1b 644 documentation/CS4099___Mid_report.pdf

5 a17f8854f2994272e09ecde6ebf98d285ab7eace 664 documentation/feedback.html

6 c3ce0309360dfa5722f8efe2f44bd09a0367f433 624 documentation/feedback_files/css

7 ...

Snippet 3.1: Example of a mercurial manifest. For each file, the manifest stores its nodeid,

permissions, and logical path within the repository.

1 hg debugdata .hg/store/00changelog.i 165 # 165 is the changeset (or changelog) number

2 d619d180b24b4dbb9f25ea56e00d59f088f51548 # the corresponding manifest id

3 sic2 # the committer

4 1492699213 -3600 # the date since the epoch plus the offset from UTC, both expressed in seconds

80nodeid = sha1(min(p1, p2) + max(p1, p2) + contents). p1 and p2 are the parents’ ids for the
node. If the parent id is null, then the id used for hashing takes the format: 0000000...000
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5 README # the list of changed files, followed by the commit message

6 documentation/CS4099___Final_Report.pdf

7 ...

8

9 Added the final report # commit message

Snippet 3.2: Example of a mercurial changeset

3.4 Cloud Storage

3.4.1 Infrastructure as a Service Storage

Cloud services can provide low-level storage abstraction — IaaS storage — of four types:

block storage, object storage, file storage, and database service. Each of these services is

related to a different type of data abstraction. Block storage services provide storage at

the block level over which users can configure file systems, databases, or their applications.

File storage is usually provided through files systems like GFS and HDFS (see Section 3.2),

while database services are usually provided by building easy-to-use interfaces on top of

existing database technologies (see Section 2.2.2). This section discusses the data model

and architecture of Amazon S3 [20]. Other IaaS storage solutions, such as Backblaze’s

B2 Cloud Storage [125] and DigitalOcean Spaces [120], provide similar abstractions and

functionalities.

3.4.1.1 Amazon S3

Amazon S3 (Simple Storage Service) is an object storage cloud service provided by

Amazon, that provides high scalability, high reliability, and low failure rate. The next

subsections describe in detail the storage metaphors it uses, how access control is regulated,

and its architecture.

Buckets and Objects

Data in Amazon S3 is stored as objects, which are organised in buckets. An object

consists of data81 and metadata and it is identified by its name. A bucket is a named

81Objects can be of size up to 5 TB.
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container that can store a potentially unlimited number of objects and is regulated by a

set of admin-defined rules. Amazon S3 is accessible to developers via SOAP, REST API,

or using one of the provided AWS SDKs.82 The name of an object must be unique within

a bucket. Objects are accessible through URL addresses with the following scheme:

http(s)://<bucket name>.s3.amazonaws.com/<object name>

As of today, Amazon S3 stores trillions of objects and handles millions of requests per

second [148].

Versioning

Object versioning is optional and must be enabled at the bucket level. All versions

are assigned a version id, which changes as data is updated, while the name of the object

remains unchanged. Amazon S3 supports only linear versioning (i.e., no branching) and

object deletion results in the creation of a special deleted version object (see Figure 3.13).

Versions are accessed specifying the bucket name, the object name and the version id:

http(s)://<bucket name>.s3.amazonaws.com/<object name>?versionId=<version id>

Metadata and Tags

An object’s metadata is a set of key-value pairs (attributes). Some of the default

metadata attributes are the data length in bytes, the data of last modification, and the

content-type of the data. Custom metadata attributes for an object can also be set. When

versioning is enabled, metadata is assigned to a particular object’s version, so that a change

in the metadata results in a new object’s version.

In addition, an object can be associated with one or more mutable tags (up to ten),

which are key-value pairs that can be used to group together objects stored within the

same bucket. While metadata attributes are used to describe objects, tags can be used to

enforce control over groups of objects, as described below.

82Amazon S3 integrates the BitTorrent protocol too, but only to retrieve data from S3 to a BitTorrent
network.
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Figure 3.13: Amazon S3 versioning diagram, derived from [149]. The vID is the version id of an
object’s version.

Access Control and Data Protection

Amazon S3 enforces access control both at the resource (i.e., objects and buckets) level,

via bucket policies and ACLs, and at the user level, through the AWS IAM (Identity and

Access Management) service [150, 151].

Furthermore, Amazon S3 protects data both in transit and at rest via encryption [152].

Data encryption is enforced at a per-object granularity using either a client master-key or

an Amazon-generated master-key.

Policies and Notifications

Amazon S3 enables users to define policies for the buckets they administer. Policies

can be enforced on specific objects or set of objects that match some given tags or whose

names start with a given prefix. The following are examples of policies:

• Define the life cycle of an object, so that after an interval of time from its creation

the object is automatically migrated to cheaper and slower-access storage services

(Amazon S3 Standard IA83 and Amazon Glacier [153]).

83IA stands for Infrequent Access.
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• Define a policy such that all new objects are replicated to another bucket.

• Define a policy such that all objects matching a given tag are replicated to a set of

selected buckets.

Furthermore, it is possible to enable notifications on a bucket, so that whenever an event

occurs (e.g., an object is added, an object is deleted, etc.) other AWS related services can

be notified and act upon it.

Architecture and Performance Enhancements

Amazon S3 is implemented as a distributed storage system with per-bucket replication.

Amazon S3 storage is distributed across multiple global data centres. The internal details

of its architecture, however, are unknown due to the closed nature of Amazon.

Amazon S3 provides also a set of mechanisms to optimise the performance of an appli-

cation using it. Some of these mechanisms are the following:

• Multipart Uploads. Objects can be divided in chunks that can be uploaded in

parallel and re-assembled once they are all stored on Amazon S3.

• Range-based downloads. Objects can be downloaded in smaller chunks, enabling

parallel downloads.

• Cross Region Replication. Objects can be replicated across multiple continents

so that latency is reduced on object retrieval.

3.4.2 Software as a Service Storage

SaaS storage provides easy-to-use cloud storage for the average end-user. In particular,

SaaS storage allows users to backup the files stored in a particular folder of their computer

over the service’s servers. Users, in addition, are able to use SaaS storage applications

from multiple machines, which are automatically synchronised. Currently, all the main

SaaS storage solutions are owned by companies that share only partial information about
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their storage models and architecture design. Some SaaS storage solutions are: Drop-

box [18], OneDrive [19], Google Drive [124], BlackBlaze [125], Amazon Drive [154], Apple

iCloud [155], and Adobe Creative Cloud [156].

In the remaining part of this section, the Dropbox solution is described in detail, since

its design and architecture is well documented. A brief summary of the Google Drive,

OneDrive, and Adobe Creative Cloud solutions follows.

3.4.2.1 Dropbox

Dropbox is a storage solution that allows end-users to backup the files stored in a

particular folder of their computer to Dropbox’s servers. Users can interact with Dropbox

directly via a browser or through a Dropbox client installed on one or multiple machines,

which are automatically synchronised with eventual consistency.

Files, Metadata, and Versions

In Dropbox, files are represented differently on the client- and the server-side. On the

client-side, files are represented using the same abstractions as the local file system. On

the server-side, files are represented as collections of immutable blocks of up to 4MB. Each

file and its blocks are uniquely identified through their hashes (SHA-256), used to provide

integrity of the stored data and block-level de-duplication. End-users can also set custom

metadata for a given file, as explained in [157].

All files associated with a given user are said to belong to a specific namespace. Files

stored within a namespace are isolated, and thus not de-duplicated, with the files of other

namespaces. In doing this, two identical files that have the same hashed identifier are

stored twice on Dropbox server if belonging to different namespaces. This mechanism is

used to prevent attacks where one can learn whether a particular file is stored in Dropbox

and then mimic having the file, given the known hash, in order to gain access to it. This

attack was shown for the first time in 2013 and is known as a dropship attack [158]. Shared

folders represent namespaces over which multiple users have access to.

Furthermore, Dropbox retains previous versions of a file for a limited amount of time [159],

which are accessible to users via the Dropbox web interface. The actual versioning model
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is unknown.

Architecture

The known architecture of Dropbox (early 2012) consists of three important com-

ponents: the client-side, the storage servers, and all the services that control and store

metadata information about users, data, and notifications [160, 161] (see Figure 3.14).

This clear separation of services has enabled Dropbox to scale to hundreds of millions of

users. When data is uploaded/downloaded to/from Dropbox, the client interacts with the

load balancer to establish a connection with the block server, which is then responsible for

controlling the rest of the data transfers. Drago et al. [160] have measured that over 90%

of the Dropbox traffic (in terms of throughput) is due to data being uploaded/downloaded,

which is handled by the storage services while keeping the interactions with the metadata

services to a minimum. Figure 3.14 shows Amazon S3 as being the IaaS storage behind

Dropbox, but most of the storage has been migrated [162] to Magic Pocket, Dropbox’s own

IaaS storage infrastructure, over the last few years. All data stored on Dropbox is protected

using AES 256-bit encryption. Moreover, uploaded files are processed through a metadata

server, which stores all the relevant metadata information about the file on database [163],

while the notification server is informed of any changes within the namespace and notifies

all the clients that have access to it.

A user making changes to a file, or directory, from two or more client machines can

result in a conflict state. Dropbox attempts to resolve the conflicts without any human

intervention when synchronising the clients with the Dropbox service. When Dropbox is

unable to resolve the conflicts, the conflicting versions of the file are stored on the client

side. The user then has to resolve the conflicts manually, by deleting all the unwanted

versions of the file.
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Figure 3.14: Dropbox architecture (early 2012) serving 50 million users. The arrows indicate the
main direction of the requests made among the components involved. Diagram derived from the
video at [161, minute 23].

Magic Pocket

Magic pocket is an immutable block storage system that Dropbox, Inc. has developed

to substitute Amazon S3 over the years. Magic pocket is designed to provide secure and

highly available storage [164].

Magic pocket stores files as a collection of blocks of size up to 4MB. All blocks are

compressed, encrypted, and assigned to a unique key, such as a SHA-256 hash of the block.

Blocks are aggregated together in buckets (1GB in size maximum) in order to improve

IO performance when large amounts of data is moved/copied between Dropbox storage

servers. In addition, blocks that are uploaded around the same time are stored closely

together, thus exploiting temporal locality.

LAN Sync

The main performance bottleneck of SaaS storage is the bandwidth limit between the

client and the service’s servers. Dropbox attempts to overcome this bottleneck via LAN

Sync [165]. LAN Sync is a feature built in Dropbox clients that can be optionally enabled

to allow data exchange directly between clients that reside in the same network. Each

client periodically broadcasts its presence over UDP (on port 17500) to other machines
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in the network, which are always listening. Whenever a file has to be downloaded, the

client asks all other known nodes in the local network if they have it, otherwise the file

is downloaded directly from Dropbox. LAN Sync operates on data files only and within

the scope of the client’s namespace. Metadata, instead, is always synchronised with the

Dropbox servers, so that it is easier to enforce consistency across multiple clients.

The Placeholder Metaphor

Smart Sync (previously known as Project Infinite) is a feature of Dropbox that allows

users to handle very large collections of data using a limited amount of hard disk space

by storing only references — placeholders — of files and folders, which are retrieved

on-demand. Unfortunately, Smart Sync is available only to Dropbox business users and

its internal structure and format could not be studied.

3.4.2.2 Google Drive and OneDrive

Google Drive is a SaaS storage solution developed by Google LLC [124]. The client-side

data model provided by Google Drive is based on files and folders, exactly like Dropbox.

Moreover, the data managed by the Google Apps (e.g., Google Docs or Google Photos)

can be automatically stored to Google Drive. Google Drive also supports the placeholder

metaphor [166].

OneDrive is a SaaS storage solution provided by Microsoft Corp. [19], similar to both

Dropbox and Google Drive. Lindley et al. [167] have recently proposed an alternative

metaphor to the file, called the file biography, in which a file is represented as an entity that

changes over time through versions and can exist in multiple locations, through actions like

sharing, copying, licensing, and cloning, while retaining its unique identity. In the examples

presented in the paper, data stored under the file biography metaphor is integrated with

OneDrive and Microsoft Word, so that its new semantic operations are preserved as data

is synchronised to/from the cloud.

The server-side data models for Google Drive and OneDrive are unknown.
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3.4.2.3 Adobe Creative Cloud

Adobe Creative Cloud (CC) is a collection of software applications and cloud services,

developed by Adobe Systems, Inc., for creative professionals who work with digital pho-

tography, videos, and graphics in general [156]. CC provides a similar set of services to the

other SaaS storage solutions presented above. The file metaphor used by the CC mobile

clients, however, differs from the standard file representation used by other SaaS storage

solutions. Goldman et al. have proposed and implemented DCX (Digital Composite Tech-

nology), a manifest-based data format that aggregates multiple independent components of

a file together [168]. For example, a Word or PDF document can be represented in DCX as

a collection of multiple components, containing the text, the formatting, the provenance, or

the images. Using the DCX abstraction it is possible to have (I) semantic de-duplication,

where semantically meaningful components of the file (e.g., images, text, and metadata

information of a PDF file) are de-duplicated rather than blocks of fixed size; (II) different

data views based on context; and (III) the ability to record the provenance of the data

independently of the data itself. (I) enables better distribution and synchronisation by

avoiding files being fragmented in blocks, which are semantically unrelated. (II) results in

better network usage and user experience for end-users, but it also means that a file can

be perceived and used differently depending on context. Provenance, as in (III), can help

end-users to understand better content and how, where, and when it originated. Further,

DCX files can be embedded within other DCX files, so that it is possible to create even

richer data abstractions.

The implementation of the DCX format can also be used through other SaaS storage

solutions as well.84

84Adobe Systems, Inc. has released an implementation of the DCX format for Dropbox under Apache
License 2.0. https://github.com/Adobe-Digital-Composites/Digital-Composites-ObjC [last accessed
on 29/03/2018].
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3.4.3 Multi-Cloud Storage

Multi-Cloud storage, also known as the Cloud of Clouds approach, is an architectural

design that consists of combining multiple independent cloud storage services into one [26].

Many solutions have been proposed recently [169, 170, 171, 172, 173, 29, 174, 175], some

with a particular focus for resource-constrained devices [28, 176, 177].

Cloud 1 Cloud 2 Cloud n...

Cloud Gateway

Download/Upload

Load Balancing

Caching

Smart Prefetching

...

Data Processing Layer

Data Protection

Compression

Erasure Coding

Data Striping

...

Data Presentation Layer

File abstraction

Versioning

De-duplication

Metadata

...

Figure 3.15: Example of a multi-cloud storage architecture. Diagram derived from [28]

A multi-cloud storage service is implemented by providing a storage interface that can

be mapped across all the supporting services, as shown in the diagram at Figure 3.15.

Data added to a multi-cloud storage service is then replicated, as a whole or after being

erasure coded, to the actual services. The independence of the used services results in a

system that has: higher availability, better security (especially if data is chunked first and

then replicated), no vendor lock-in, and better resistance to services failing. Multi-cloud

storage presents some disadvantages too. Firstly, multi-cloud storage services can provide

only limited capabilities, defined by the least common denominator operations among the

supporting services. Secondly, the development and maintenance of multi-cloud services are
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complex and expensive due to having to manage services that provide different workflows

and APIs. Finally, multi-cloud storage services still may include a central infrastructure

layer to control the existing underlying services and that can be a single point of failure

for the system.

3.5 P2P

3.5.1 Overlay Networks

P2P storage systems are a type of shared-nothing distributed storage system (see Sec-

tion 2.2.4.3), where nodes, or peers, are all treated as equals and can act both as clients and

servers. P2P networks implement virtual overlay networks on top of the physical network.

The type of overlay network defines the behaviour and performance of the P2P network.

This section summarises briefly the types of overlay networks.

3.5.1.1 Unstructured Overlay Networks

In unstructured overlay networks no well-defined relationships between peers or between

peers and the data they store exist [178]. Early P2P systems, such as Gnutella [179] or

Freenet [180], are based on an unstructured overlay network. In such systems, peers usually

interact with their neighbours only, such as when peers join or leave — knowingly or due to

failures — the network (this is known as churn) or when data is being looked up. However,

locating content in an unstructured P2P system can be hard. Looking up for data among

neighbour peers can be inefficient and not even return a result, especially for networks of

hundreds, thousands, or even more peers. Heuristic routing strategies have been devised

to locate content in the network, such as flooding, used by Gnutella [179], or hill climbing,

used by Freenet [180]. Understanding these strategies, however, is not the focus of this

thesis.

3.5.1.2 Structured Overlay Networks

Structured overlay networks are defined by a set of rules, such that peers are arranged

in structures like rings or trees [178]. In structured overlay networks, data is placed de-
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terministically over peers of the network. In a structured overlay network, every node is

assigned a unique identifier from a large identifier space (e.g., SHA-1 identifiers belong to

an identifier space of 2160 entries). Each node is responsible for a set of identifiers that

is closest to its own.85 Data is also assigned an identifier (e.g., the hash of the data) and

stored in the node that manages the identifier space that contains such identifier. Exam-

ples of structured overlay networks are Chord [181], CAN (Content-Addressable Network)

[182], Pastry [183], Tapestry [184], and Kademlia [185].

Structured overlay networks manage content through a distributed hash table (DHT),

a decentralised data structure that provides a content storage and lookup service [186, 178].

A DHT provides the following two interfaces:

put(data, data key)

get(data key)→ data

Structured overlay networks are more efficient than unstructured overlay networks when

looking up exact data matches, but perform worst when searching content by its attributes

or range-based queries, since node and data identifiers do not reflect the actual nature of

the data.

3.5.2 P2P Storage Systems

A large number of P2P storage systems have been developed over the years, both from

the academic [112, 187, 188, 189] and the open source communities [113, 190, 191, 57, 192].

This section discusses in detail only the data models and architecture of OceanStore [112],

IPFS [113], Perkeep [190], and Tahoe-LAFS [191, 193]. These systems have been chosen

because of their historical significance, interest by the scientific and open source commu-

nities, and their properties and data models. However, many P2P storage systems share

ideas and design choices with the ones presented below.

85The definition of identifier distance depends on the actual overlay network implementation.
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3.5.2.1 OceanStore and Pond

OceanStore is the design of a P2P global-scale persistent storage system relying on the

Tapestry overlay network [184] and proposed by Kubiatowicz et al. [112] in the year 2000.

Pond is a prototype of a P2P storage system largely based on the OceanStore design and

released under the BSD license [194].

Data Model

The OceanStore data model [112, 194, 195, 196] is based on data objects which are

versionable, with each version identified by a GUID, calculated by hashing the content

of the versioned data (VGUID). A data object can either represent a file or a directory.

The collection of all the versions of an object is identified by the active GUID (AGUID),

generated by hashing the owner’s public key and the human-readable name of the object.

Mutability is achieved by aggregating the different versions of the same objects through the

same AGUID. Each version object is subdivided into immutable blocks (8KB by default

in the Pond implementation), each identified by a GUID, generated by hashing the block

data (BGUID) (see Figure 3.16). Metadata, such as the owner’s id or user specified data,

is stored within the version entity of an object. The overall structure is a Merkle tree.
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Figure 3.16: Diagram of the OceanStore data model. Each version is a Merkle tree of read-only
blocks. Versions are identified by the VGUID, while all blocks are identified by BGUIDs. The data
of a version is stored in the leaf nodes of the B-tree (green boxes). The group of all versions is
identified by the AGUID. Diagram derived from [194].
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Architecture

OceanStore is built on top of a hybrid overlay network (i.e., a network where some nodes

are organised in a structured overlay network and others are not), with nodes identified

by ids generated by hashing their public keys and locations (e.g., ip or hostname), as

suggested by Mazières [197]. The immutable components of the data model, the blocks

and the object versions, are managed over a Tapestry network. Update operations (i.e.,

mapping the active GUID of an object to a specific version GUID) are managed through

primary-copy replication, where each uploaded object is assigned to a primary replica, a

small set of nodes that controls data updates — using a Byzantine agreement protocol to

agree on the updates — and enforces access control restrictions, via ACL. Further, objects

are stored to two other types of nodes: archival storage peers and secondary replica

peers. The diagram in Figure 3.17 shows the different types of nodes in OceanStore. After

an object is updated through the primary replica, erasure coding is applied at the block

level and distributed across the Tapestry network to the archival storage peers.

Data objects are also replicated to secondary replica peers, which are used to increase

data availability and bring data objects closer to other clients.
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Archival Storage

Secondary Replicas
Client

1
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3
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encryption keys
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ACL
ACL
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Figure 3.17: Diagram illustrating the process of updating a data object in OceanStore. Diagram
derived from [194]. First of all the client sends the update object to the primary replica (1). The
primary replica nodes agree on the update (2) and then propagate the object to the archival storage
nodes and the secondary replica nodes (3). Other clients can retrieve the object from the secondary
replicas(4).
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Access Control

The OceanStore model enforces access control over data via the primary replica [112].

A user can be granted read and/or write permission on the data. Read-only permission

is achieved by encrypting the data with an encryption key, which is distributed to all

the users to whom read access should be granted. A user is granted write permission by

adding his/her public key to an ACL (see Section 2.1.8.1), which is securely managed by

the primary replica. Data writing operations must be signed and verified against the ACL

to be accepted.

3.5.2.2 InterPlanetary File System

IPFS (InterPlanetary File System) is an open source (MIT) P2P file system with ver-

sioning built-in [113]. IPFS consists of a distributed data model and a P2P architecture.

The IPFS data model is constructed on top of two other projects — developed by the same

open source community — called IPLD and Multiformats. These auxiliary projects are

described briefly below.

IPLD

IPLD (InterPlanetary Linked Data) is the generic data model framework upon which

the IPFS data model is built. IPLD models data as content-addressable and allows data

instances to be part of a unified data model [198]. The IPLD open source community

has developed IPLD-based models for IPFS [113], git [92], Bitcoin [199], Ethereum [200],

ZCash [201], and Torrent [202]. The IPLD data structures can be expressed in multiple

formats, such as JSON, YML, CBOR, or XML. The advantage of using IPLD is that it is

possible to define first class entities using a consistent data structure, so that content can

be easily referenced and exchanged among different actors. The IPLD model is based on

the following three constructs: Merkle-links, Merkle-DAG, and Merkle-paths.

Merkle-Link

A Merkle-link defines a directed relationship between two objects and consists of a

string key and the hash of the target object, which is stored within the source object.
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{

"/" : "QmKq5sNclPz7QV2+lfQIuc6R7oRu0="

}

JSON 3.3: Example of a Merkle-Link.

Merkle-DAG

Content-addressable objects which are linked via Merkle-links form a Merkle-DAG,

a directed acyclic graph of objects that form a Merkle data structure. Section 3.3.3.2

described the Merkle data structures and their properties in more detail.

Merkle-Paths

A Merkle-path is a Unix-like path that allows Merkle-links to be aggregated together

to address nested objects.

# Object with hash: A00000EBiSfc7D25570fFCw9QPDFA=

{

"foo" : {

"bar" : {"/" : "QmKq5sNclPz7QV2+lfQIuc6R7oRu0=" },# This is a Merkle-Link

"baz" : "QmKq5sNclPz7QV2+lfQIuc6R7oRu0=", # This is not a Merkle-link

"fred" : "cat"

}

}

# Object with hash: QmKq5sNclPz7QV2+lfQIuc6R7oRu0=

{

"id" : 123,

"info" : {

"name" : "Bob the Cat"

}

}

JSON 3.4: Examples of linked Merkle objects.

The data structures in the example of JSON 3.4 can be traversed using the following

paths:

• A00000EBiSfc7D25570fFCw9QPDFA=/foo - returns the foo object
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• A00000EBiSfc7D25570fFCw9QPDFA=/foo/bar - returns the second object with hash

QmKq5sNclPz7QV2+lfQIuc6R7oRu0=

• A00000EBiSfc7D25570fFCw9QPDFA=/foo/fred - returns the “cat” string

• A00000EBiSfc7D25570fFCw9QPDFA=/foo/bar/id - returns the id value 123 for the

object with hash QmKq5sNclPz7QV2+lfQIuc6R7oRu0=

• A00000EBiSfc7D25570fFCw9QPDFA=/foo/bar/info/name - returns the string “Bob

the Cat”, stored as part of the object with hash QmKq5sNclPz7QV2+lfQIuc6R7oRu0=

Multiformats Project

The multiformats project defines a collection of protocols which are self-describing, in

order to promote better interoperability, extensibility, and backward compatibility among

applications and over time. In this thesis, only the multihash and multiaddr protocols are

examined.

Multihash

Multihash is a self-describing protocol for hashes that is constructed through the fol-

lowing pattern:

<hash-func-type><digest-length><digest-value>

Where, the hash-func-type is a positive integer that defines the hash function (e.g.,

0x11 for SHA1, 0x12 SHA2-256, 0xb240 for BLAKE2b-512); the digest-length is the length

in bytes of the hash value; and the digest-value is the actual hash value calculated using

the specified hash function and of the specified length. Hash values are always of the same

size for a given hash function, so the digest-length is needed simply for implementations

that are unable to parse a given hash function.

The following is an example of a multihash for SHA1:

11148a173fd3e32c0fa78b90fe42d305f202244e2739

where the first two digits - 11 - indicate the function SHA1, the third and fourth - 14

- the length of the hash in hexadecimal and the rest of the digits are the hash value.

93



Chapter 3. Literature Review

Multiaddr

Multiaddr is a self-describing protocol for network addresses that is constructed through

the following pattern:

(/<addr-protocol-str-code>/<addr-value>)+

Where, the addr-protocol-str-code is a string identifying the network protocol (e.g., tcp,

udp, http, etc.); while the addr-value is the actual network address value. Multiaddresses

can be concatenated together.

The following is an example of a multiaddr for an ip/tcp/http address:

/ip4/127.0.0.1/tcp/80/http/baz.jpg

Data Model

The IPFS data model, built on top of the IPLD model and the multiformats project,

consists of four object types:

• The blob object, which stores data similarly to git.

• The list, which aggregates blobs and lists. A list is meant to be used to represent a

large file composed of multiple de-duplicated components.

• The tree, which aggregates blobs, lists, and other trees. A tree is used to represent

a directory.

• The commit, which links content together as it mutates over time.

Figure 3.18 illustrates the relationship between the entities defined by the IPFS model.

The IPFS model is partially inspired by the git model, from which it borrows also the

terms blob, tree, and commit, but it allows its entities to be distributed independently

from each other, while in git all entities are enclosed within a repository.

Architecture

The IPFS architecture is based on a DHT, similar to the one used by the Self-certifying

File System [197, 203], where nodes self-assign ids by hashing their public key. The node’s

94



3.5. P2P
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Figure 3.18: IPFS data model.

keys are also used to sign network requests. The id of the node is expressed using the

multihash format, while the location of a node is expressed using the multiaddr format.

IPFS uses a block exchange protocol, BitSwap, where nodes exchange blocks irrespective

of the file they belong to.

3.5.2.3 Perkeep

Perkeep (previously Camlistore - Content-Addressable Multi-Layer Indexed Storage) is

“a set of open source formats, protocols, and software for modelling, storing, searching,

sharing and synchronising data” [190] (under the Apache-2.0 license) for personal data

management. Perkeep is designed for personal storage, thus it is optimised to work with a

small set of peers, unlike many other P2P storage systems.

Data Model

In Perkeep content is represented through the standard file and directory metaphors,

modelled using a large variety of first-class objects. All objects are identifiable by their

hashes. The diagram in Figure 3.19 shows the relationship among the supported object

entities. The following are the main types of objects introduced by the Perkeep data model:

• The blob object stores data, similarly to the blob in IPFS and git. A blob is identified

by a blobref, which is the hash of the blob.
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• The file/bytes object consists of a collection of blobs. A file may contain metadata

about the data stored in the blobs, while the bytes object does not.

• The static-set represents a collection of blobs or other static-sets, similar to the tree

object in git.

• A claim is any object that is signed and contains a reference to the signer. Claims

can be used to record arbitrary metadata, mark content as a directory, as deleted,

or as shareable with other users.

• The permanode is a special type of claim object that enables Perkeep users to create

static references to mutable objects. A claims has always a reference to a permanode

and optionally to other Perkeep objects.

Claim

Blob
Data

- Type
- Timestamp
- Attribute
- Value

value

File/Bytes

Permanode

Signer

signersigner

[ part ]

value

- permanode
- member
- share
- delete

Public Key

value

Static-set

Any object

[ member ]

Figure 3.19: Perkeep data model.

Versioning

Unlike other P2P storage systems, such as OceanStore and IPFS, Perkeep does not rely

on a Merkle data structure to manage versioning. Instead, content is versioned by creating

new claim objects and their relationship, and ordering, is established using timestamps
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stored within the claim objects. The result of this versioning mechanism is that data is

always versioned linearly (i.e., branching and merging operations are not allowed).

3.5.2.4 Tahoe-LAFS

Tahoe-LAFS (Least-Authority File Store) is a decentralised cloud storage system de-

signed to provide high privacy, integrity, and security over the stored content [56, 193].

Data Model and Access Control

Tahoe-LAFS uses the standard file and directory metaphors when presenting content

to its end-users. However, it is also important to understand how data is stored and

protected, since privacy, integrity, and security are the three main principles of the system.

Files in Tahoe-LAFS are either immutable or mutable and referenced through their

capability. In Tahoe-LAFS, a capability is defined as a hash value which identifies the file

and is generated differently based on the type of file:

• Immutable file. The capability is the hash of the file’s data.

• Mutable file. This is a file that can change over time, while retaining the same

capability [191]. A mutable file is associated with a public/private key pair and the

capability is calculated using these keys. Two types of capabilities can be generated:

– Read-write capability, represents the ability to get and update the file’s data.

The capability is the string write-key:fingerprint, where the write-key is

the symmetric key used to encrypt the file’s private key and the fingerprint is

the hash of the file’s public key.

– Read-only capability, represents the ability to get the file’s data. The capability

is the string read-key:fingerprint, where the read-key is the hash of the

write-key (i.e., it can be generated only by someone who has write access to the

file) and the fingerprint is the hash of the file’s public key.

To avoid global file de-duplication attacks, such as dropship for Dropbox [158] (see

also Section 3.4.2.1), a client can set a convergence secret, a random string never to be
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shared with other users and which is used when generating the hash of files. When using

convergence secret two exact files will have different hashes and global file de-duplication

attacks are avoided.

File 2:?20
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Encrypt
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Segments

Blocks
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Figure 3.20: File addition workflow diagram for Tahoe-LAFS. A file is (1) encrypted; (2) chunked
into segments; (3) segments are erasure-coded into blocks; and then (4) blocks are distributed across
multiple storage nodes.

Finally, Tahoe-LAFS provides high levels of security and data availability by encrypting

data, chunking it into multiple segments and applying erasure coding for each segment, as

shown in Figure 3.20. The overhead cost of this process is traded-off with the ability of

Tahoe-LAFS to reconstruct a file even when some of the redundant data is lost, corrupted,

or temporarily unavailable. By default, erasure coding (see Section 2.1.6.2) is applied with

(n, k) equal to (3, 7), such that only 3 blocks out of 10 are needed to reconstruct a segment.

In this case, the storage space cost of erasure coding is higher than replicating content three

times, but the system can tolerate a higher number of failures, in terms of node failures,
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data loss, and data corruption.

3.6 Context-Aware Storage

Organising and managing data in a storage system is challenging, in particular as the

amount of data and the number of devices and services increases. The task of data man-

agement, such as replicating data for backup, can be achieved manually or via applications

such as Time Machine or SaaS storage solutions. Another alternative, which has been

explored over the last decades, is context-aware storage.

One of the most widely accepted definitions of context is the one by Dey and Abowd [204,

205]:

Context is any information that can be used to characterize the situation

of an entity. An entity is a person, place, or object that is considered relevant

to the interaction between a user and an application, including the user and

applications themselves.

The problem of how data should be organised based on context has been addressed

multiple times over the years. The Semantic File System [206], one of the first context-

aware storage solutions, allows users to define rules to extract metadata information about

the stored files and uses it to provide dynamic views of the data. Freeman and Gelernter

proposed Lifestreams, a storage system where files are organised as a stream of ordered

content along the time axis [207]. In Lifestreams, files are not necessarily associated with

a name and their location is simply their relation to the time stream. Lifestreams classifies

files based on their metadata, similarly to the Semantic File System, so that it is possible

to resolve queries as such “all emails I haven’t responded to” or “all the pdf files accessed

yesterday”. Lifestreams, however, does not scale well when the number of files increases.

The system is unable to extract metadata for all files, while users would be overwhelmed

by the amount of content presented.

An alternative approach to model context storage is proposed by Román et al. with

Gaia, a ubiquitous operating system with a built-in context-aware storage: the context file
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system [208]. In Gaia, data is organised through dynamic data views that have knowledge

of the current environment context (e.g., number of people in the room, device used, etc.).

WinFS was an attempt by Microsoft to build a storage system for the Windows operating

system which provided dynamic views of the stored data [76], similarly to the Semantic

File System, Lifestreams, or Gaia. WinFS, however, also had the ability to define data

types and relationship between files. For example, documents could be associated with

metadata of type ‘contact’, where each context could be related to a picture that identifies

it. Defining these types of relationships allowed users to express rich search queries, such

as “find all the image files that have been taken in Canada by the calendar contact user

X, modified by user Y yesterday”.

Veeraraghavan et al. proposed the concept of quFile, where a file is associated with

multiple views, each returned to the user based on particular parameters of the current

context (i.e., the device used, the bandwidth of the network, etc.) [209]. The file biog-

raphy [167] and Adobe’s DCX [168], presented in Sections 3.4.2.2 and 3.4.2.3, are other

examples of context-aware data metaphors.

Other solutions of context-aware storage supporting entity-relationships have also been

built over the years [210, 211, 212, 213, 214].

Advanced context-aware storage systems, like the Semantic File System, Gaia, and

WinFS, have proved to be overly complex, hard to scale, or difficult to integrate with

existing storage systems. Nonetheless, some of the basic ideas of context-aware storage are

now applied over existing and widely used storage solutions. Automatic data management

based on context is a concept used in other types of storage systems too. For example,

Amazon S3’s policies can be used to migrate the contents of a bucket to cheaper storage

solutions as it becomes old and infrequently accessed, all without any human intervention.

The next subsections describe in more detail the Semantic File System and the quFile

metaphor.
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3.6.1 The Semantic File System

The seminal work by Gifford et al., the semantic file system (SFS), is one of the first to

explore how data storage could be enhanced by the automatic extraction of data attributes

and tag-association [206]. The SFS automatically extracts metadata attributes via trans-

ducers. A transducer is “a filter that takes as input the contents of a file, and outputs

the file’s entities and their corresponding attributes” [206], thus acting as a classifier for

the file when this is created or modified. Examples of transducers reported in the paper

can extract meta information from mails, TEXfiles, compiled C objects, CAD projects,

and C/Pascal/Scheme source code. The SFS provides dynamic views of the file system

through virtual directories. A virtual directory is a directory whose name is interpreted

as a query against the index of all files that have been classified by the transducers. For

example, the path sfs/owner:/simone/ext:/pdf identified the virtual directory with all

pdf files owned by the user simone.

3.6.2 The quFile

The quFile is a file metaphor presented by Veeraraghavan et al. that enables multiple

physical representations of a file to be grouped under the same logical file view [209]. For

example, a quFile for a photo can be represented by multiple files of different formats

(e.g., jpg, png, tiff) and resolutions (e.g., 640x480, 1024x768, 1920x1440), but only one

of these representations is returned to the user based on the context, which could depend

on the type of device or the bandwidth of the network. Other storage systems provide

context-based views of the data too, based on the screen size [215, 216] or the battery

status of the device [217]. Similarly, the MPEG file format, in 2011, has been extended

to provide dynamic adaptive streaming over HTTP (MPEG-DASH) so that the quality

of a video depends on the quality of the network [218]. Adobe’s DCX format can also be

used to provide context-aware storage by returning different views of a file based on the

context [168].

The views and operations provided by quFiles are programmable and are described by
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four types of policies:

• Name policies allow quFiles to be mapped to zero or more named logical represen-

tations of the data.

• Content policies allow quFiles to return different content based on context. The

content returned can be stored in the file system or created dynamically, where

possible. An example of a content policy is: “return JPEG if cached, else return

PNG”.

• Edit policies specify what operations are allowed on the content. There are three

types of edit policies upon content modification: allow, disallow, create a new version.

• Cache policies allow content to be cached for faster data retrieval. These types

of policies are useful when using quFiles in a distributed system, where data is not

always available and caching can have a significant impact on the overall storage

system.

3.7 Conclusions

This chapter has presented a general overview of the state of the art about data man-

agement systems (DMS). This chapter addresses different types of DMS, from local file

systems to P2P storage, and for each of them it describes and discusses their data abstrac-

tion, access control models, security mechanisms, metadata management, and architecture.

Given the literature review presented above and the systems taken into account, the fol-

lowing statements can be made:

• The file and directory are the two most fundamental abstractions in storage systems.

These abstractions were introduced decades ago and the way they are used today

differs from what they were originally meant for. However, files and directories are

still relevant nowadays, since end-users are familiar with them.
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• The ability of versioning content is becoming a common property of many storage

systems. Versioning can be achieved in multiple ways, each with its own advantages

and disadvantages.

• Metadata can vary from system to system, but its purpose is central to many stor-

age solutions. The ability to model metadata correctly and position the metadata

management component of a system properly into the architecture is key to achieve

reliability, consistency, and scalability.

• Context awareness is key to provide richer experience to end-users and enhance the

common file/directory abstractions.

In particular, the following can be stated for each storage system class and how it

relates to the hypotheses stated in Chapter 1.

• File systems are built around the file and directory abstractions. These abstrac-

tions, however, are not designed to be easily described by metadata, versioned, and

distributed. Moreover, file systems do not provide abstractions to describe how con-

tent should be managed over time and over a set of distributed nodes.

• Networked file systems are based on the same abstractions as file systems, but pro-

vide a set of protocol that allow content to be managed over the network. Nonetheless,

versioning is not part of their data models and/or protocols and granular automated

control of the data is usually provided at the application level only.

• Traditional versioning systems do provide the ability to record how content

changes over time and, sometimes, what metadata describes a particular version.

However, these systems are designed to work as self-contained systems, rather than

distributed systems. For example, backup solutions are designed to version data for

a particular device only, while version control systems, such as git or mercurial, do

version content within the scope of a repository, rather than a global collection of

data. Moreover, versioning systems do not provide control mechanism to define how

data should be replicated and protected.
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• Cloud storage solutions are of two main categories: infrastructure as a service stor-

age and software as a service storage. The former solutions are often built around

an object-based data model, with no data aggregation and versioning. The latter

solutions, instead, provide users a data model that resembles the one used by tradi-

tional file systems. Cloud storage vendors usually provide versioning and metadata

capabilities, but these are built as part of their infrastructure rather than the actual

data models in use. In addition, cloud storage solutions provide access-control and

granular control over data, but these are centralised services not designed to work

across multiple services. Multi-cloud storage solutions attempt to solve cross-cloud

integration at the cost of providing the lowest common denominator data model

among the solutions supported.

• P2P storage solutions can provide location transparency and access control over

globally distributed data. Some solutions are also able to provide versioning over

content. However, none models metadata as a separate versionable entity from data

and allows granular automatic control over data. Finally, with the exception of IPFS,

P2P data abstractions are tightly bound to a particular architecture design and

data model implementation, thus making it harder to manage data across multiple

different systems.

• Context-aware storage systems provide granular control over data, but their

context models do not always take into account that data can be distributed across

multiple nodes of a network and that data can change over time and thus be versioned.

Moreover, these solutions are rarely built on top of abstractions that are independent

of their implementations.

The systems presented in this chapter are also evaluated comparatively in Chapter 7

against the solution presented in this thesis.
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The objective of this work is to propose the design of a generic data model that satisfies

the hypotheses provided in Chapter 1. This section outlines the requirements to design

such a model and build a prototype of it.

The end-user requirements specify what features and behaviours the SOS should provide

to the end-users.

The model requirements specify what the SOS data model needs to provide to satisfy

the hypotheses H1 and H2 as stated in the Introduction Chapter (see section 1.3).

The architecture requirements consist of the functionalities needed for the SOS to work

in a distributed environment.

4.1 End-User Requirements

EU-1 Location abstraction: data should be accessible irrespective of the location where

it is stored.

EU-2 Accessibility abstraction: data should be accessible irrespective of the location

it is accessed from.

EU-3 Users and Roles: a user (e.g., Simone, Al, Graham) should be associated to

multiple roles (e.g., home, work, hobby) and have a different view of the SOS based on its

current role.
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EU-4 Data protection: users should be able to enforce arbitrary levels of data protec-

tions, in terms of what to protect and what encryption algorithms to use.

EU-5 Versioning: it should be possible to version data and metadata at different gran-

ularities.

EU-6 Automatic data management: users should be able to define rules to automat-

ically manage data in a distributed environment. Rules define:

• Against what data the rule should be run (i.e., what data should be automatically

managed).

• Over what nodes the rules should be run.

• What actions should be applied on such data.

4.2 Model Requirements

M-1 Immutability: the components or entities that describe the model should be im-

mutable.

M-2 Integrity: it should be possible to verify the integrity of the content managed

through the model.

M-3 De-duplication: the model should support data de-duplication.

M-4 Self-describing entities: entities should be self-describable (see Glossary of Terms),

so that no additional information is needed to use and process a given entity.

M-5 Independent entities: it should be possible to distribute content independently of

any other modelled entity.

M-6 Computational work: it should be able to define computational work that runs

over the stored content. It should be possible to distribute the computation across the

system.
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4.3 Architecture Requirements

A-1 CAP: the system should be designed to be always available and tolerant against

network partitions (i.e., AP compliant, see Section 2.1.5). Thus, data should always be

available, assuming that it is reachable, and failures regarding some nodes of the system

should be tolerated. This system will forfeit strong consistency across all available nodes.

A-2 Failure: the system should be able to cope with failures using an eventually consistent

model.

A-3 Heterogeneity: the system should work independently of the type of hardware and

operating system it runs on.

A-4 Horizontal scalability: the system should be able to scale horizontally (i.e., adding

nodes to the system).

A-5 Node configuration: it should be possible to configure a node in terms of what

services it provides to the system.

A-6 Decentralisation: the system should be able to work without the need of a central

authority.

A-7 RESTful API: a node should expose its services via a RESTful API.
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This chapter presents the design of the Sea of Stuff (SOS), a generic model for dis-

tributed data storage that addresses the two hypotheses – H1 and H2 – presented in

the Introduction Chapter, Section 1.3.

The design of the Sea of Stuff consists of a model and an architecture of nodes in

a network. Section 5.1 presents how nodes, data, metadata, users, and computation are

modelled. Section 5.2 discusses in detail the architecture of SOS nodes and the interaction

between the different components of the model.

A prototype implementation of the SOS and example applications built on top of it are

presented in the next chapter.

5.1 The Sea of Stuff Model

5.1.1 The Sea of Stuff GUID

The SOS is based on content-addressable entities that are identified by globally unique

identifiers (GUID) (see Section 2.1.2). In the SOS, a GUID is defined as the value that re-

sults from a cryptographic hash function being applied over some content (the content that

is being hashed depends on the type of the entity). The use of a cryptographic hash func-

tion allows both content-addressability and integrity verification (see Background Chapter)

over content. Moreover, GUIDs, in the SOS, are formatted as to be self-describing. Such

a property is achieved by formatting the GUIDs as following:

〈function name〉 〈base〉 〈hash value〉
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The function name is a string that identifies the hashing algorithm. For example, the

following strings can be used as function names: MD5, SHA1, SHA256, BLAKE, BLAKE2.

The base parameter defines the numerical base on which the hash is based (e.g., base 16,

base 32, or base 64). Finally, the hash value parameter is the actual hash. Examples of

GUIDs derived using the hash function SHA256 and expressed in base 16 and 64 are the

following:86

SHA256 16 d7a8fbb307d7809469ca9abcb0082e4f8d5651e46d3cdb762d02d0bf37c9e592

SHA256 64 16j7swfXgJRpypq8sAguT41WUeRtPNt2LQLQvzfJ5ZI=

The terms GUID and reference will now be used interchangeably. To provide better

readability, all the examples in the rest of this work will have GUIDs expressed as hexadec-

imal hashes of length five and the function name and the base parameter will be omitted

(e.g., d7a8a, 4e29a, 10304, ae510).

5.1.2 A Manifest-based Model

The SOS consists of content-addressable entities of different types described by mani-

fests. A manifest is a self-describing and re-computable (see Glossary of Terms) structured

‘document’ that stores information about the entity it describes and that can be published

in the SOS to allow the discoverability of the entity. Manifests are content-addressable

by their hashes (i.e., GUIDs). The GUID is derived by hashing the content related to

the manifests, which depends on the type of manifest. Each SOS entity is described by a

manifest of a particular type, which has a base structure as defined in Manifest 5.1.

{

"type" : <Manifest Type>, # Literal string, such as Atom, Compound, Version, etc.

"guid" : <hash(Content to Hash)>, # The content to hash depends on the type of manifest.

...

}

Manifest 5.1: Base Manifest JSON structure.

86The string hashed is: “The quick brown fox jumps over the lazy dog”.
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5.1.3 The Node Model

In the SOS, data and metadata are stored in and retrieved from nodes. A node is

any physical device in the SOS network that can interact with other nodes by sending or

receiving information to or from them. A node serves as an access point to the SOS and

is identifiable by a GUID. The node manifest (see Manifest 5.2) consists of the hostname

and port number necessary to interact with it, a public key used to sign the requests made,

and the list of services that it provides.

The pair of keys assigned to a node are used to digitally sign/verify network requests

(see Section 5.2.1 for more details about digitally signed requests) and to calculate the

GUID of the node. The GUID of the node is calculated by hashing the public key of the

node, so that it is unique to the node that can correctly sign the requests made. This

approach is similar to the one used by SFS [197, 203] and other distributed systems, such

as OceanStore [112], Tahoe-LAFS [191], and IPFS [113]. This approach adds a security

layer to the SOS against Sybil attacks. A Sybil attack is one where the attacker attempts

to forge a node’s identity [219]. In a distributed system, for example, an attacker may

forge the identity of multiple nodes with the aim to gain trust in the system and perform

malicious operations.

{

"type" : "Node",

"guid" : <hash(d_public_key)>,

"d_public_key" : <public key>,

"hostname" : <hostname> or <IP address>,

"port" : <port number>,

"services" : {

"nms" : {

"exposed" : <true/false>

},

"mdms" : {

"exposed" : <true/false>

},

"urms" : {

"exposed" : <true/false>
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},

"mms" : {

"exposed" : <true/false>

},

"sms" : {

"exposed" : <true/false>

},

"cms" : {

"exposed" : <true/false>

}

}

}

Manifest 5.2: Node Manifest in JSON format.

A SOS node may provide any or all of the following services:

• Node management service (NMS)

• Manifests and Data management service (MDMS)

• User-Role management service (URMS)

• Metadata management service (MMS)

• Storage management service (SMS)

• Context management service (CMS)

Each service handles a particular aspect of the model. Section 5.2.1 describes these

services in more detail. The implementation of a node should expose each service to the

network via a REST API, as discussed in more detail in Section 5.2. The node abstraction,

from now on, will be represented using the schematics in Figure 5.1:

5.1.4 The Data Model

The data model defines the data that may be stored in the Sea of Stuff and how data is

stored and retrieved irrespective of its location; aggregated together; and versioned at dif-

ferent granularities. The data model consists of three types of entities: atoms, compounds,
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Type: Node
GUID: node-ref
d_pub_key: pub-key
Hostname: hostname/ip
Port: port number
Services: {
  service-name: {
    Exposed: true/false
  }
}

(a)

Type: Node
GUID: node-ref

(b)

Figure 5.1: Two different graphical representations of the same node manifest, where (b) is a
simpler representation of (a).

and assets. The next subsections introduce these three entities, what features they provide,

their limitations, and how they are represented as manifests within the SOS.

5.1.4.1 Atom

Two of the most basic and important properties of a storage system are how data is

represented and how data and data locations are related one another. The Background

and Literature Review Chapters have explored how these two properties are related and

some solutions provided by different systems. The atom is the data metaphor of the SOS

model and also the entity that abstracts data from locations.

An atom is an immutable sequence of bytes identified by a GUID, deterministically

derived from hashing the atom’s sequence of bytes. An atom is associated with an atom

manifest, which allows the atom to be managed and referenced independently from loca-

tions (see Figure 5.2). The atom manifest serves three main functions: (I) finding the atom

in the Sea of Stuff ; (II) checking the integrity of the retrieved data; and (III) aggregating

potential locations of the atom. The atom manifest is identified using the same GUID as

the atom it describes. However, the atom and the atom manifest are two distinguishable

entities, since the former is stored in the SOS data space, while the latter is stored in the

SOS manifest space.
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Type: Atom
GUID: atom-ref Data

Atom Manifest Atom

Figure 5.2: Diagram showing the logical relationship between the atom manifest and the atom.

An atom can be stored in one or multiple locations. The SOS data model supports

locations that can be accessed through the SOS protocol (sos://) — SOS locations —

or via other existing access protocols — external locations — such as HTTP, HTTPS,

FTP, and SFTP.

SOS locations are expressed as URIs and bind together the GUID of the atom and the

node where it is stored as follows:

sos://<host-guid>/<content-guid>

The host-guid is the identifier for a node that can serve the atom matching the content-

guid. The content-guid is the GUID generated by hashing the atom87, which can be used

to verify the integrity of the atom when this is returned by the node identified by host-guid.

External locations can be described by multiple schemes, each reflecting its own prop-

erties. For instance, HTTP locations are not self-describing, meaning that there exists

no relationship between the URI and the content it addresses. For example, the location

http://example.com/image.jpg may contain an image of a bird, a fish, or not an image at

all, and when one attempts to retrieve its content, he/she is unable to verify whether the

content has changed or not.

Locations stored in the atom’s manifest are marked as: provenance, cache, and persis-

tent, as described below.

• Provenance: the original location of the atom.

• Cache: a location that contains the atom and has good access properties in terms

of latency, throughput, and/or availability.88

87Remember that this is the same GUID for the atom and the atom manifest.
88Note that the term cache, in this instance, is merely an hint to the properties of the location and it is

not used in the traditional sense, as described in the Background chapter.
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• Persistent: a location that contains the atom with high durability.

The provenance, cache, and persistent labels serve only as retrieval hints for the atoms

stored at the given locations, so that nodes in the SOS can make better decisions when

retrieving atoms. The model does not provide any mechanism to enforce the relationship

between the retrieval hints and the actual data stored at those locations.

Manifest 5.3 outlines the structure of the atom manifest. The GUID field of the

atom manifest identifies both the manifest and the atom. The SOS supports a content-

addressable namespace, so the GUID can be used to locate the atom using a DHT (see

Section 3.5.1.2). Alternatively, the atom can be found via the atom manifest, which can

store a set of locations, making the manifest self-contained and anyone having access to

it can retrieve the atom without necessarily having to contact other nodes to discover its

location. An atom manifest is represented graphically as in Figure 5.3.

{

"type" : "Atom",

"guid" : <hash(data)>,

"locations":

[

{

"type" : "cache", "persistent", or "provenance",

"location" : <SOS/external location>

}

]

}

Manifest 5.3: Atom Manifest in JSON format.

The list of locations stored in an atom’s manifest is mutable. However, even though

the atom’s manifest can change over time, its association with the atom is immutable.

Type: Atom
GUID: atom-ref
Locations: [
    {
       Type: cache/persistent/prov.
       Location: atom-location
    }
]

Figure 5.3: Atom Manifest representation
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The example in Figure 5.4 shows how an atom (i.e., the picture of the fish), can be

stored in multiple locations. In this case the locations are in nodes 3001 and 4001 and are

abstracted by the atom manifest identified by the GUID f1544.

Type: Atom
GUID: f1544
Locations: [
    {
       Type: cache.
       Location: sos://3001/f1544
    },
    {
       Type: persistent.
       Location: sos://4001/f1544
    }
]

f1544

3001

f1544

4001

Figure 5.4: Example of an atom manifest containing references to two atoms stored in two different
locations (see Image Credits for the source of the fish image and the PC and laptop icons).

5.1.4.2 Compound

Another important property of a storage system is its ability to aggregate data together

to provide a logical organisation across the system. Hierarchical file systems use directories

to collect files and other directories together. Zip files and application packages are also

abstractions that serve the purpose of aggregating content. Version control systems, like

git [92] and mercurial [93], and P2P storage solutions, such as OceanStore [112], IPFS [113]

or Perkeep [190], use manifest-like structures to aggregate content by content-addressable

references. Composite formats are also a type of abstraction that permits content to

be aggregated with some meaningful semantics. The SOS allows content to be collected

together through the compound abstraction using an approach similar to the one adopted

by git and IPFS.

A compound is an immutable collection of GUIDs that refer to SOS entities, such
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as atoms and/or other compounds. A compound serves two purposes: (I) aggregating

entities and (II) aggregating chunks of a single datum. In the former case the compound

is known as a collection type compound, while in the latter case it is called a data

type compound. Data type compounds are useful when storing very large amounts of

data, which are split into smaller chunks to exploit de-duplication (i.e., two exact chunks

are stored only once). Further, moving smaller chunks of data in a distributed system is

faster, especially when the chunks are transferred in parallel.

Overall, the compound consists of three main elements: the compound type, its con-

tents, and the GUID that identifies it, derived from the contents. The contents of a

compound are organised as a list of references to other SOS entities, such as atoms and

compounds. The compound can also be used to aggregate other types of SOS entities,

such as versions or metadata, introduced in the next sections. Moreover, each entity con-

tained in the compound can be optionally labelled using an arbitrary string. Labelling the

contents of the compound allows content that is content-addressable to be referred by a

human-readable name. Finally, the GUID of the compound is calculated by hashing the

manifest type, the compound type, and the list of contents that make up the compound

itself:

GUID = hash(Compound + T + 〈compound type〉+ C + [〈content〉+ .])
89

The elements in bold are fixed and necessary to calculate the hashes for all compounds.

The fixed elements are necessary to define the structure of the compound entity and avoid

second preimage attacks.90 The elements between the brackets 〈〉, instead, change based

on the type of compound and its contents. The 〈content〉 of the compound is defined as

89The list of contents consists of (GUID, label) pairs, which are sorted alphabetically along the GUID
values. The sorted pairs are then concatenated together before being hashed.

90A preimage attack on cryptographic hash functions consists of a malicious party trying to find a
sequence of bytes that evaluates to a specific hash value [220]. A Second preimage attack is one where
given some input data, it is possible to find another sequence of bytes whose hash value is the same as for
the first data input.
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either a reference to the content or as a label-reference pair. The purpose of the label is to

embed useful information about the associated reference. The ability of the compound to

aggregate content by references means that content can be de-duplicated as shown in the

example in Figure 5.6. The GUID of the compound can be used to ensure integrity over

the compound manifest as well as over its contents.

The elements of the compound are organised in a compound manifest (see Mani-

fest 5.4), which can be represented graphically as shown in Figure 5.5.

{

"type" : "Compound",

"guid" : <hash(type, compound_type, contents)>,

"compound_type" : "collection" or "data",

"contents" :

[

{

"label" : <label value>,

"guid" : <GUID to content>

},

{

"guid" : <GUID to content>

}

]

}

Manifest 5.4: Compound Manifest in JSON format.

Type: Compound
GUID: compound-ref
Compound Type: collection/data
Content: [
    {
       *Label: label
       GUID: content-ref
    }
]

Figure 5.5: Compound Manifest representation. The starred label field is optional.
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Type: Compound
Compound Type: collection
GUID: c001a

Type: Compound
Compound Type: collection
GUID: c200a

Type: Atom
GUID: f1544
Locations: [
    {
       Type: cache.
       Location: sos://3001/f1544
    }
]

f1544 b1001

Type: Atom
GUID: b1001
Locations: [
    {
       Type: cache.
       Location: sos://3001/b1001
    }
]

Type: Compound
Compound Type: collection
GUID: 157e0

Type: Atom
GUID: 00101

Type: Atom
GUID: 20020

00101 20020

orange �sh blue �sh documents

Figure 5.6: Diagram showing an example relationship between compound manifests and their
contents. The atom b1001 (i.e., the blue fish) belongs to the contents of both compounds c001a
and c200a and it is de-duplicated. In addition, it should be noted that some of the compound
contents are labelled, while others are not (see Image Credits for the source of the fish images and
the file icon).

Paths

The result of using compounds to aggregate atoms or other compounds is a directed

acyclic graph (DAG) of entities, similar to hierarchies for file systems. This graph can be

traversed following the references inside the compounds. The set of references needed to

address an entity forms a path (see Section 2.1.2), where each level in the path is delimited

by the ‘/’ (slash) symbol. The following is an example of a path to access a specific entity

of the compound:

<GUID compound>/<GUID entity>

Alternatively, the path can be constructed using the label of the entity (if present):

<GUID compound>/<label entity>

The label must be unique within the compound. Moreover, the same principle can be

applied recursively for entities that are compounds, as shown in the following examples,
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for the compound with GUID 29abe:

29abe/6029a // Entity 6029a is a compound labelled foo

29abe/foo

29abe/foo/59aeb // Entity 59aeb is an atom labelled bar

29abe/6029a/59aeb

29abe/6029a/bar

29abe/foo/bar

5.1.4.3 Asset and Versions

The third entity type of the data model is the asset, an abstraction that allows users to

manage content irrespectively of where it is stored and how it has changed over time. An

asset is a mutable collection of immutable versions, which are linked to each other to form

a Merkle DAG (see Section 3.3.3.2). Each version refers to some content, which can be an

atom or a compound. The collection of versions that make the asset is identified by an

invariant, a GUID that indicates that versions are associated with the same asset. Unlike

other GUIDs, the invariant is not derived from the referenced contents, but is randomly

generated and valid irrespective of the asset’s contents. Versions are linked with each

other by having references to their previous versions. The GUID of the version manifest

is derived by hashing its content and attributes as following:

GUID = hash(Version + I + 〈invariant〉+ C + 〈content〉+ P + [〈previous〉+ .]

A version is represented by a manifest as shown in Manifest 5.5. In the remainder of

this thesis, the illustrations in Figure 5.7 will be used to represent the version manifest. In

some cases the content reference will be drawn explicitly as in Figure 5.7b, while in other

cases the references are omitted as in Figure 5.7a.
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{

"type" : "Version",

"guid" : <hash(invariant, content, previous)>,

"invariant" : <invariant GUID>,

"content" : <content GUID>,

"previous" : [ <previous GUID> ]

}

Manifest 5.5: Version manifest in JSON format.

Type: Version
Invariant: invariant-ref
GUID: version-ref
Content: content-ref
Previous: [ version-ref ]

(a)

Type: Version
Invariant: invariant-ref
GUID: version-ref

content

Type: manifest type
GUID: reference
...

(b)

Figure 5.7: Two graphical representation of a version manifest.

How Assets Evolve over Time

An asset describes mutable content in the SOS by collecting together all the immutable

versions of the content, which are marked with the same invariant GUID. The remainder

of this section describes how an asset is created and used to version content.

Asset Creation and Versioning

The creation of an asset is as simple as creating a version manifest with a randomly

generated GUID for the invariant and assigning some content to the version by reference.

Versions are immutable and do not change, so assets enable mutability over content through

the addition of new versions. When this evolution, or versioning, step takes place, a new

version must be created such that it has the same invariant of the previous version, a

reference to the new content, and a reference to the previous version, so that a relationship

between the two versions is established. Figure 5.8 illustrates the creation of an asset and

its evolution, with new versions having references to their previous ones.
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Type: Version
Invariant: 11001
GUID: abc01

Type: Version
Invariant: 11001
GUID: abc01

previous
abc01 Type: Version

Invariant: 11001
GUID: def02

previous
def02 Type: Version

Invariant: 11001
GUID: 9ab03

Type: Atom
GUID: f1544

content f1544

Type: Atom
GUID: f1544

content f1544

Type: Atom
GUID: 4451f

content 4451f

Ti
m

e
Asset 11001 
at t=0

Type: Version
Invariant: 11001
GUID: abc01

previous
abc01 Type: Version

Invariant: 11001
GUID: def02

Type: Atom
GUID: f1544

content f1544

Type: Atom
GUID: 4451f

content 4451f

Type: Atom
GUID: 4f154

content 4f154

Asset 11001 
at t=1

Asset 11001 
at t=2

Figure 5.8: Diagram showing the creation of the first version of an asset and how it evolves over
time.

Branching

An important operation in VCS is branching, the result of two, or more, versions that

evolve from the same version, known as the common ancestor of the branches. Branching

represents an important workflow in VCS, since it allows its users to evolve content in

multiple ways in parallel. Figure 5.9 illustrates the branching operation for versions ghi03
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and jkl04 in relation to their common ancestor def02. The branching operation increases

the number of leaves in the DAG by one.

Type: Version
Invariant: 11001
GUID: abc01

Type: Version
Invariant: 11001
GUID: def02

Type: Version
Invariant: 11001
GUID: 9ab03

previous
abc01

previous
def02

Type: Version
Invariant: 11001
GUID: 8cd04

previous
def02

Figure 5.9: Diagram showing a version being branched into versions ghi03 and jkl04.

Merging

Merging is the operation of creating a new version from two or more previous versions.

Conflicts resulting from a merging operation are not covered by the SOS model, but tools

operating on the SOS can provide conflict resolution mechanisms when needed. Merging

can be thought of as the opposite of the branching and can reduce the number of leaves in

the DAG if more than one of the previous versions was a leaf. Figure 5.10 illustrates the

operation of merging two versions, ghi03 and jkl04, into version mno05.

Type: Version
Invariant: 11001
GUID: def02

Type: Version
Invariant: 11001
GUID: 9ab03

previous
abc01

previous
def02

Type: Version
Invariant: 11001
GUID: 8cd04

previous
def02

Type: Version
Invariant: 11001
GUID: 7ef05

previous
9ab03

previous
8cd04

Figure 5.10: Diagram showing two versions being merged into one, mno05.

Versions with Compounds of Versions

A property of the model presented in this work is its ability to version content at

arbitrary granularities. Data in a VCS is versioned at the repository level (see Section 3.3),

such that the history of a file, or folder, is strictly related to the history of the entire

repository. In the SOS, instead, it is possible to version data and collections as well as

other assets or collections of assets. The example shown in Figure 5.11 illustrates the asset

with invariant 959ab referring to a compound of versions.
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Type: Version
Invariant: 959ab
GUID: ef019

Type: Version
Invariant: 959ab
GUID: e790a

Type: Compound
Compound Type: collection
GUID: 01654

Type: Compound
Compound Type: collection
GUID: 98711

previous
ef019

Type: Version
Invariant: 88efd
GUID: 2201a

Type: Version
Invariant: ab421
GUID: 0851c

Type: Version
Invariant: 88efd
GUID: 85501

Type: Version
Invariant: bafe8
GUID: 848eb

previous
2201a

“�sh” x 2201a

“plan.doc” x 0851c

“�sh” x 85501

“tank” x 848eb

Figure 5.11: Diagram showing how the SOS allows to have versions of compounds which refer to
versions of other assets.

Head and Tips

The ‘current’ version of an asset is defined as its head. A client operating on the node

can decide to change the head of an asset to any version of the asset. This action affects the

state of the client only. The tips of an asset are all the versions of an asset that are leaves

of the DAG. Tips are very important because versions have references to their previous

versions but not to future ones, so it becomes hard to navigate an asset without the tips.

A tip can also be defined as the latest version for a given branch of an asset.

The SOS models head and tips, but these are not represented as manifests and are

therefore valid only within a node. Thus, the same asset stored in a different node can

have different head and tips based on what actions were performed on that node.

Consistency

The versioning mechanism described above supports a loose consistency model, where

multiple users or processes can end-up having a different view of the SOS and its data.

The SOS data model does not describe, in fact, any consistency mechanism to ensure that

two users have the same view of a given asset. Employing a loose consistency approach
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Type: Version
Invariant: 11001
GUID: abc01

Type: Version
Invariant: 11001
GUID: def02

Type: Version
Invariant: 11001
GUID: 9ab03

previous
abc01

previous
def02

Type: Version
Invariant: 11001
GUID: 8cd04

previous
def02

HEADTIPS

Type: Version
Invariant: 11001
GUID: 5bd06

previous
9ab03

Type: Version
Invariant: 11001
GUID: 6ac07

previous
def02

Manifest Space

Local Node

Figure 5.12: Diagram showing the head and tips of an asset’s DAG.

results in a simpler data model and allows users and/or applications to build any stronger

consistency strategy on top of it. For example, a shared file system that requires strong

consistency could be implemented on top of the SOS in such a way that any data updates

are serialised by a central service. Alternatively, the nodes providing the shared file system

could support a strong consistency model through the implementation of an agreement

protocol among them.
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5.1.4.4 Summary

The SOS data model allows data to be abstracted from its locations with atoms and

atoms’ manifests, organised in hierarchies using compounds, and versioned at arbitrary

granularities as assets. A very important property of the SOS model is that its entities

are immutable and independent and the linking between these entities is achieved through

references (i.e., GUIDs). The use of GUIDs gives the model a degree of flexibility over its

entities that allows any content to be versioned at different granularities, which is one of

the desirable properties of an ideal system where version control is in place, as stated in

Chapter 1. Moreover, entities can be used in more ways than the ones suggested in this

work. Chapter 9 discusses alternative ways to use the SOS model and how it could be

improved in the future.

The diagram in Figure 5.13 summarises the SOS data model when all components are

put together. In particular, the diagram shows all the possible relationships among all

entities of the data model.

Type: Version
Invariant: invariant-ref
GUID: version-ref

Type: Compound
Compound Type: collection/data
GUID: compound-ref

Type: Atom
GUID: atom-ref

[ previous ]

content

content
[ label x content ]

[ label x content ]

Data

[ type x location ]

[ label x content ]

Figure 5.13: Schematic for the data model.
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5.1.5 The Metadata Model

The data model enables users to store and access data (i.e., via atoms) irrespective of its

locations, aggregate content together (i.e., via compounds), and version content over time

(i.e., via assets). The metadata model extends the data model by allowing the content that

is referenced by a version to be associated with arbitrary metadata. Section 2.1.3 defined

metadata as “data about data” and stated how important metadata is in data storage

systems. Chapter 3 explored how state of the art storage systems manage metadata.

In the SOS, metadata is represented through the metadata manifest and it is of

extrinsic type, since it is not stored within the data. The metadata manifest consists of

a list of properties (see Manifest 5.6). A property is defined as the triplet (key, type,

value). The property key can be any arbitrary string, the type defines the nature of the

property, and the value is the actual state of the property associated with the given key

and of the specified type. The prototype presented in Chapter 6 supports the types listed

in Table 5.1. However additional property types can be added, such as arrays, objects or

the timestamp type. The type attribute, in fact, allows a property to be extended beyond

the standard JSON capabilities.91 Properties of type string, long, double, and boolean are

literal values, while GUID properties enable metadata to link content over other entities

of the SOS, such as the version of another asset or a role (see Section 5.1.6 below).

Type Examples

String “text/html”, “red”

Long -1, 0, 1, 255

Double -3.14, 2.71828

Boolean true, false

GUID SHA256 16 5a63f...

Table 5.1: Metadata types currently supported by the current prototype of the SOS.

{

"type" : "Metadata",

"guid" : <hash(properties)>,

"properties" : [

91JSON only supports the following types: string, number, JSON object, array, boolean, and null.
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{

"key" : <property name>,

"type" : "string", "long", "double", "boolean", or "guid",

"value" : <property value>

}

]

}

Manifest 5.6: Metadata manifest in JSON format.

Metadata is linked to the relevant content through the version manifest. The version

manifest allows metadata to be linked by using an additional, optional, metadata field

(see Manifest 5.7, and Figure 5.14 for an illustration of the relationship). Having the

relationship between a version manifest and a metadata manifest stored in the former allows

metadata to be de-duplicated across multiple versions. The metadata field, if present, will

be used to generate the GUID of the version:

GUID = hash(Version + I + 〈invariant〉+ C + 〈content〉+

P + [〈previous〉+ .] + M + [〈metadata〉+ .])

{

"type" : "Version",

"guid" : <hash(invariant, content, previous, metadata)>,

"invariant" : <invariant GUID>,

"content" : <content GUID>,

"previous" : [ <previous GUID> ],

"metadata" : <metadata GUID>

}

Manifest 5.7: Version manifest linking content and metadata.

The list of metadata properties is generated through a metadata engine that processes

the content of the version (more on this in Sections 5.2.2.4 and 6.1). Figure 5.15 shows an

example of a png fish image versioned by the asset 10295 and described by the metadata

manifest identified by the GUID 33745. The metadata describes the fish atom in terms of
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Type: Version
Invariant: invariant-ref
GUID: version-ref
Content: content-ref

metadata
Type: Metadata
GUID: metadata-ref
Properties: [
  {
     Key: property-key
     Type: String, Long, GUID
     Value: property-value
  }
]

Figure 5.14: Diagram showing the relationship between a version manifest and the associated
metadata manifest.

its type (png), its size (855819 bytes), and its most prevalent colour (orange).

A node supporting the SOS model can build an inverted index on the stored metadata

manifests and a reverse map for the version-metadata relationship to provide search over

the content of the SOS using the information stored in the metadata. Having these two

data structures, anyone searching for content of colour ‘orange’, will find the metadata

manifest 33745 from the inverted index and the version 54320 from the reverse map.

These data structures are stored locally to the node, but content is still searchable across

the SOS as long as nodes expose their functionalities via an API.

Type: Version
Invariant: 10295
GUID: 54320

metadata
33745

content
f1544

Type: Metadata
GUID: 33745
Properties: [
  {
     Key: “content-type”
     Type: “String”
     Value: “image/png”
  },
  {
     Key: “size”
     Type: “Long”
     Value: 855819 
  },
  {
     Key: “color”
     Type: “String”
     Value: “Orange” 
  }
]

Type: Atom
GUID: f1544
Locations: [
    ...
]

f1544

Figure 5.15: Example of metadata being linked to an atom through the version manifest.

Decoupling the metadata from the data it describes through the version manifest has
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its advantages as well as its disadvantages. For instance, having the metadata stored as

a separate manifest from the version manifest, it is possible to describe and handle the

content of a version without having to have the actual content. Moreover, it is possible to

replicate the metadata independently of the data it describes. On the other hand, getting

the data from the metadata has a cost due to the additional index data structures that a

node has to maintain.

Alternative Metadata Design

An alternative design for modelling the metadata consists of storing each property in

its own manifest and using a compound-like manifest to group together all such properties.

The advantages of this design are better de-duplication of the metadata and the ability

to perform metadata search without the need of an inverted index. On other hand, this

design would add another level of indirection to retrieve metadata for some given version.

Such alternative design could be explored in the future.

5.1.6 The User-Role Model

In the SOS, data ownership and protection are achieved through the user-role model.

This model consists of two concepts: the user and the role. In the SOS the concept of

user is associated with the one of a real-life user that interacts with the SOS. For example,

each of the three people ‘Simone’, ‘Al’, and ‘Graham’ can be associated with a respective

named user entity. A user interacts with the SOS through one or multiple roles. The

role is an SOS entity that users use to: (I) define ownership of content; (II) digitally sign

manifests; (III) and protect content via encryption. Examples of user-role relationships

are the following:

• The user ‘Simone’ is associated with the ‘Home’ and ‘PhD’ roles;

• The user ‘Al’ with the ‘Home’, ‘Work’, and ‘Photographer’ roles; and

• The user ‘Graham’ with the ‘Home’, ‘Work’, and ‘Runner’ roles.
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The User

The relevant attributes of the user entity are its name and a pair of asymmetric keys,

used to digitally sign/verify content. The name is a human-readable string that allows

SOS users to informally refer to end-users. The private key is used for the creation of all

the roles associated with the user (see next Section), while the public key is used to verify

such roles. The generic scheme of the user manifest is shown in Manifest 5.8.

{

"type" : "User",

"guid" : <hash(type, name, d_public_key)>,

"name" : <User name>,

"d_public_key" : <public_key> # public key for digital signatures

}

Manifest 5.8: User Manifest.

The Role

The role entity consists of two key pairs, one to digital sign manifests, as explained

in Section 5.1.6.2, and one to protect content, as explained in Section 5.1.6.3 (see Mani-

fest 5.9). A role is always associated to a user and signed using the user’s private key.

{

"type" : "Role",

"guid" : <hash(type, user, name, signature, d_public_key, public_key)>,

"name" : <Role name>,

"user" : <User GUID>,

"signature" : <as signed by User>,

"d_public_key" : <public_key>, # public key for digital signatures

"public_key" : <public key> # public key for content protection

}

Manifest 5.9: Role Manifest.

The user and role manifests will be represented as in Figure 5.16. The three function-

alities provided by the role — ownership, manifest signature, and content protection —

are discussed in more details in the next subsections.
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Type: User
GUID: user-ref
Name: user-name
d_pub_key: pub-key

(a)

Type: Role
GUID: role-ref
User: user-ref
Name: role-name
Signature: signature
d_pub_key: pub-key
Public Key: pub-key

(b)

Figure 5.16: Diagrams for the user and role entities.

5.1.6.1 Ownership

Content ownership is established by referencing a role from the metadata of a given

version. Moreover the metadata can be used to store not only the owner of a version, but

also other types of role relationships (e.g., author, tester, client, stakeholder, etc.).

{

"type" : "Metadata",

"guid" : <hash(properties)>,

"properties" : [

{

"key" : "owner", # This could also be author, tester, client, stakeholder, etc.

"type" : "guid",

"value" : <reference to role>

}

],

...

}

Manifest 5.10: Metadata manifest in JSON format containing the owner property.

5.1.6.2 Signing Manifests

The role entity allows manifests to be digitally signed and therefore to have authenti-

cation and non-repudiation, in addition to integrity, over the content of the manifest. The

atom manifest acts only as a means to abstract data from its locations, so ensuring data

integrity via the GUID field is enough. In the case of the other manifests, however, the

digital signature can be used to demonstrate the authenticity of its content. For example,
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if the role ‘PhD’ by the user ‘Simone’ digitally signs a certain compound manifest, then

anyone can verify that the manifest was signed by the role ‘PhD’ and that no one has

tampered with it. It should also be remembered that the ‘PhD’ role manifest itself is

signed by the user ‘Simone’, so the same properties can be verified for the role manifest.

Figure 5.17a shows the relationship between a compound manifest, its role signer and its

matching user. A signed manifest is created by adding the signer and signature fields to

it (see Manifest 5.11).

{

"type" : <Manifest Type>,

"guid" : <hash(Content to Hash)>,

"signer" : <guid of signer role>,

"signature" : <sign(Content to Sign)>, # The content to sign depends on the type of manifest

...

}

Manifest 5.11: Base Signed Manifest JSON structure.

Type: Compound
Compound Type: collection/data
GUID: compound-ref
Signature: signature

label x content

signer
Type: Role
GUID: role-ref
Name: role-name
Signature: signature
d_pub_key: pub-key

Type: User
GUID: user-ref
Name: user-name
d_pub_key: pub-key

user

Type: manifest type
GUID: reference
...

(a)
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Type: Version
Invariant: invariant-ref
GUID: version-ref
Signature: signature

signer

content

Type: Role
GUID: role-ref
Name: role-name
Signature: signature
d_pub_key: pub-key

Type: User
GUID: user-ref
Name: user-name
d_pub_key: pub-key

user

Type: manifest type
GUID: reference
...

(b)

Figure 5.17: Diagrams for signed manifests. (a) illustrates a compound being signed, while (b)
shows an analogous relationship for a signed version manifest.

5.1.6.3 Protecting Content

Manifests and atoms, as seen so far, are stored in clear text. Hence, anyone who has

access to them is able to read them. The role entity allows manifests and atoms to be

protected using a combination of symmetric and asymmetric encryption.

Protecting Content

Content in the SOS is protected by encrypting it using a symmetric encryption mecha-

nism (e.g., AES). The symmetric key is randomly generated and then encrypted using the

public key of the role. The pair composed by the role GUID and the encrypted symmetric

key is then added to the manifest of the protected entity as shown in Manifest 5.12. The

generic algorithm to protect content in the SOS using roles is described in pseudo-code in

Algorithm 1. In the SOS, protection can be applied at different granularities because not

all entries have to be necessarily encrypted. For example, one may want to protect atoms

and compounds, but not the metadata describing them. The content to encrypt depends

on the type of entity:

• Atom: the actual atom is encrypted (see example shown in Figure 5.18 and the

resulting protected manifest at Manifest 5.13).

• Compound : the list of contents in the manifest is encrypted.

• Metadata: the list of properties in the manifest is encrypted.
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{

"type" : Protected Manifest Type,

"guid" : <hash(contents)>,

...,

"keys" : [ {

"key" : <encrypted key>,

"role" : <role guid>

} ]

}

Manifest 5.12: Protected manifest in JSON format.

{

"type" : "Atom Protected",

"guid" : "54842", # hash(encrypted atom)

"locations" : [ {

"type" : "persistent",

"location" : "sos: //09102/54842"

} ],

"keys" : [ {

"key" : "192a+=" # <encrypted(symmetric_key)>,

"role" : "09af9"

} ]

}

Manifest 5.13: Example of a protected atom manifest in JSON format.
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Algorithm 1: Generic algorithm to encrypt any content in the SOS through the role.

Input: Content C to protect
Result: Encrypted content C′ and encrypted key KR

begin

1. Generate a random symmetric key K

2. Encrypt C with K →C′

3. Encrypt K with the public key of role R, Rpub k →KR

4. Store the manifest with the pair: (KR, R).
The manifest can store multiple (key, role) pairs.

5. if C is an atom, then store C′

6. if C is not an atom, then embed C′ as part of the manifest

end

Type: Atom
GUID: f1544

Encrypt with 
random 

symmetric key

Type: Role
GUID: 09af9
Name: Home
Signature: 42sxj+=
pub_key: fsr8a/=

Type: User
GUID: 44e8a
Name: Simone
d_pub_key: 42s4a

user

hash

f1544

54842

Type: Atom P.
GUID: 54842
Locations: [ ... ]
Keys: [
  {
     Role: 09af9
     Key: 192a+=
  }
]

Encrypt with 
private key

192a+=

Manifest 
Creation

Role GUID
09af9

(1)

(2)

(2)

(2)

(3)

Figure 5.18: Example of an atom being protected through the role entity.
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Reading Protected Content

Protected content can be read only by the roles that are listed in the keys field of

the protected entity manifest. If the role is listed, then it must decrypt the associated

encrypted key using its private key and use the decrypted key, which is the same symmetric

key used to protected the content, to read the protect entity. The generic algorithm to

read protected content using roles is described in pseudo-code in Algorithm 2.

Granting Access

The process of a role (granter) granting access to a protected entity to another role

(grantee) involves three steps:

• The encrypted key associated to the granter should be decrypted using the granter

private key.

• The decrypted key should be re-encrypted using the public key of the grantee.

• The grantee’s GUID and the new encrypted key should be added to the manifest (in

the keys field).

Algorithm 2: Generic algorithm to read encrypted content through a role.

Input: Encrypted content C′ to read
Result: Decrypted content C
begin

1. Get the manifest M for C′

2. Get the key KRi for the role Ri from M, where i is one of the roles stored in the key
set of the manifest

3. Decrypt KRi with the private key of R, Rpriv k →K

4. Decrypt C′ using K →C

end
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5.1.7 The Context Model

One of the challenges identified in the Introduction Chapter is how to enable users to

control data in a distributed system in an automatic manner. The Sea of Stuff provides

a computational model, known as context model, that allows users to define rules to

automatically capture content of the SOS and perform actions over a set of nodes. The

context model is based around the concept of context, defined as:

a set of information used to characterise and automatically manage a col-

lection of related data in a distributed system.

Contexts are used to organise, search, and share data and collections of data. The

following are some examples of how contexts can be used to automatically manage content

in the Sea of Stuff :

• To classify all images taken with a particular camera, with a high percentage of blue

colour and taken during the summer.

• To classify content, as in the previous example, and ensure that such content is

replicated at least N -times over some nodes that one can trust.

• To migrate content from one node to another.

• To distribute data partitioned in shards over a set of nodes with a given dispersion

factor.

The context model not only allows computation to be performed over the SOS, but also

enables end-users to understand and manage their content in new ways. Contexts provide

the following three main functionalities:

1. Assets’ versions, distributed over a set of nodes, can be automatically classified.

2. A set of actions can be defined and run automatically for the classified versions,

as in 1. The operations can be extended (or restricted) to have effect over a set of

nodes.
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3. The state described by 1 and 2 is automatically enforced over time with eventual

consistency.

The implication of using contexts to organise and manage data in a distributed system

is that end-users do not perceive their collections of data as static (e.g., compounds),

but rather as collections that can mutate over time and act upon changes of the system.

Contexts can also be thought of as smart folders92 over a distributed system with the

ability to automatically apply operations over the data.

5.1.7.1 The Context

A context is defined by its predicate and policies, computational work units that

operate over the content of the SOS. A context has one predicate and zero, one or more

policies. The predicate is a boolean-valued function that characterises data stored within

a domain of nodes. All the contents identified by the predicate of the context within

its domain are known as the contents of the context. A policy consists of a set of

operations performed to automatically manage the content identified by the predicate over

a codomain of nodes. The codomain is the collection of nodes over which policies operate.

A context is represented by a manifest containing (see Manifest 5.14):

• A GUID that identifies it.

• A reference to the predicate used to identify its content.

• The list of node references that make the domain of the context.

• A reference to the policies used to automatically manage the content identified by

the predicate.

• The list of node references that make the codomain of the context.

• A reference to a compound of contents identified by the predicate (i.e., a new version

of the context is created when its contents change).

92The concept of smart folders is available in Mac OS and Windows operating systems. Linux users can
use FUSE based file systems or other solutions to achieve similar results.
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Type: Predicate
GUID: predicate-ref
Predicate: predicate func

Type: Node
GUID: node-ref

Type: Compound
Compound Type: collection
GUID: compound-ref

predicate

[ policy ]

content

domain

Type: Node
GUID: node-ref

codomain

Type: Context
GUID: context-ref
Invariant: invariant-ref
Name: name
Timestamp: ts (s)
Max Age: max age (s)

previous

Type: Policy
GUID: policy-ref
Apply: apply-func
Check: check-func

Figure 5.19: Relationship between the context and its components.

Figure 5.19 illustrates the relationship between the context and its components. The

GUID of the context is calculated as following:

GUID = hash(Context + N + 〈name〉+

I + 〈invariant〉+ P + 〈previous〉+

C + 〈content〉+

DO + 〈domain〉+ CO + 〈codomain〉

The fields used to calculate the GUID of the context are also indicative of the compo-

nents that can change over time: the name, the contents of the context, the domain, and

the codomain.

The contents of a context can change over time based on the nature of the predicate

and/or when assets are added, updated, and deleted in the domain. In order to maintain

the immutability property of a context, the context manifest is extended with a previous

attribute, like that provided by a version manifest. Sections 5.1.7.2 explains in more details

how the context is versioned.

{

"type": "Context",

"guid": <hash(type, name, invariant, previous, content,
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domain, codomain, predicate, max_age, policies)>,

"timestamp": <timestamp>, # in seconds

"name": <context name>,

"invariant": <hash(type, predicate, policies, max_age)>,

"previous": <previous GUID>, # Optional

"content": <content GUID>,

"domain": {

"type": "LOCAL", "SPECIFIED", or "ANY",

"nodes": [ <node GUID> ]

},

"codomain": {

"type": "LOCAL", "SPECIFIED", or "ANY",

"nodes": [ <node GUID> ]

},

"predicate": <predicate GUID>,

"max_age": <maximum age>, # in seconds

"policies": [ <policy GUID> ]

}

Manifest 5.14: Context Manifest in JSON.

5.1.7.2 The Predicate

The purpose of the context’s predicate is to classify SOS content and is expressed as a

boolean-valued function that operates over the GUID of an asset’s head and returns either

true or false. The nodes over which the predicate of a given context is run is called the

domain. For simplicity, we say that the predicate is run over the contents of the domain

to mean that it runs over all the heads of the assets stored within the domain.

The predicate is represented as a manifest (see Manifest 5.15) and it is defined by three

components: the type, the GUID, and the actual predicate function. In the current design

the predicate function is defined as a Java method that takes the GUID of the asset’s head

as a parameter and returns a boolean.
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{

"type" : "Predicate",

"guid" : <hash(predicate)>,

"predicate" : <code>

}

Manifest 5.15: Predicate Manifest.

The Predicate Function

An example of predicate function is the acceptAll predicate, which may be used to

classify all the assets within a domain. Code 5.16 shows the implementation of the acceptAll

predicate in Java.

1 boolean acceptAll() {

2 return true;

3 }

Code 5.16: Predicate acceptAll expressed in Java.

More commonly, however, a predicate takes the GUID of an asset’s head and additional

parameters as input. Given the GUID of a version (i.e., the asset’s head), the predicate can

retrieve and process any SOS entity that is related to it, such as its content, its metadata,

and even its previous versions. An example of a predicate that inspects the version’s meta-

data is the contentType predicate (see Code 5.17) which retrieves the metadata associated

to the version, searches for any metadata property with key “Content-Type” and checks

whether its value is the one specified. Txt, jpeg, mp3, doc, or html are all examples of

content types that this predicate could operate on.
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1 boolean contentType(GUID guid, List<String> matchingContentTypes) {

2 Property property = getProperty(guid, "Content-Type");

3 if (property != null) {

4 String contentType = property.getValue();

5 return matchingContentTypes.contains(contentType);

6 } else {

7 return false;

8 }

9 }

Code 5.17: Predicate contentType expressed in Java.

The following are examples of predicates:

• A function that returns true if the version references an atom that is of JPEG type.

• A function that returns true if the version references an atom that is of JPEG type

and it is mostly blue.

• A function that returns true if the version references an atom that is of JPEG type

and has trees in it (recognised via AI or machine learning algorithms).

• A function that returns true if the version references an atom that is associated with

metadata with a certain ‘ownership’ field.

• A function that returns true if the version is signed by a certain role.

• A function that returns true if the data is stored at a given node (within the domain).

The implementation details about predicate functions are discussed in more details in

Chapter 6.

For the purpose of this first design of the SOS, a boolean-valued function was chosen

because it discretely divides the managed content in two spaces, one where content is

associated with the predicate’s context and one where this is not the case. Moreover,

thinking about boolean-valued functions and acting upon them is inherently easier.
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Future work should explore and evaluate the possibility of using predicate functions

that return integer and/or natural numeral values, probability values, sets of values, or

even object values. The challenge with using more complex predicates is understanding

what the output values mean, how the SOS space is divided, and what policies to apply

for the different partitions.

The Time-Validity of a Predicate

The contents of a context can change over time if (I) the contents within the domain

change (e.g., a new asset is added or an existing one is updated) and/or (II) the nature

of the predicate depends on time. To avoid reprocessing contents that have already been

assigned to the context, a maximum age attribute can be set, which defines for how long

the results of a predicate should be considered valid. The maximum age attribute can take

three values: zero, infinite, and a positive integer.

• A context with maximum age of zero indicates that its contents are valid only at

the time when they were associated to the context, as specified by the timestamp of

the context.

• A context with maximum age of infinity, or a very large number, will have its

contents valid forever (or for such a very long time that the validity of its contents

can be ignored). It follows that the results of a predicate can be re-used and there is

no need to re-run the predicate over content that was already classified.

• When the maximum age is set to a value of N , then the contents of a context

are considered valid only for N seconds from the timestamp.

Maximum Age is N seconds – An Example

In the example in Figure 5.20, a context named ‘All JPEG Images’ classifies all the

JPEG content stored at the local node. The context has a maximum age of 45 seconds,

while its predicate is run every 30 seconds. The context at t=0 has its contents collected in

the compound with GUID 73969. These contents are valid for any future context that has
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a timestamp within t=0 and t=45. Thus, the contents for the context at t=30 is the pair

of the compounds with GUID a5f4e and GUID 73969. However, the same is not true for

the context with t=60. The same logic is applied to the context with t=90, whose contents

are the ones from compounds with GUID 8ea11 and GUID 8771c.

Type: Context
GUID: 71526
Timestamp: 0
Invariant: ca99b
Name: All JPEG Images
Max Age: 45
Predicate: 99801
Domain: [ local node ]

Type: Compound
Compound Type: collection
GUID: 73969

content

Type: Context
GUID: 5710a
Timestamp: 30
Invariant: ca99b
Name: All JPEG Images
Max Age: 45
Predicate: 99801
Domain: [ local node ]

Type: Compound
Compound Type: collection
GUID: a5f4e

content

previous

Type: Context
GUID: b4c76
Timestamp: 60
Invariant: ca99b
Name: All JPEG Images
Max Age: 45
Predicate: 99801
Domain: [ local node ]

previous

Type: Context
GUID: 44d8a
Timestamp: 90
Invariant: ca99b
Name: All JPEG Images
Max Age: 45
Predicate: 99801
Domain: [ local node ]

Type: Compound
Compound Type: collection
GUID: 8771c

content

previous

time (s)
0 30 60 90

Type: Compound
Compound Type: collection
GUID: 8ea11

content

Type: Version

Type: Atom

Type: Version Type: Version

Type: Version

previous Type: Version

previous

Q(71526) = {73969} Q(5710a) = {73969, a5f4e} Q(b4c76) = {a5f4e, 8ea11} Q(44d8a) = {8ea11, 8771c}

Queries: Q(context GUID) = {compounds GUID}

Figure 5.20: The context named ‘All JPEG Images’ has a maximum age of 45 seconds. Some of
the intermediary manifests and details are omitted for better readability. The queries at the bottom
indicate the compounds returned when retrieving the contents of the different context versions.

Context Synchronisation

The predicate is run over all the contents stored in each node of the domain. When the

domain of a context is composed of more than one node, the context and its computational

units are copied over the domain, so the predicate is actually run by each node of the

domain over their respective contents. In the case of nodes in the domain that do not

support contexts (e.g., nodes acting as storage only), the data to be processed is moved

across the other nodes in the domain. The higher cost of moving data to nodes that can

run predicates should be taken into account when running predicates over multiple nodes.
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Each copy of the context is called a context instance. The synchronisation between the

different instances is performed periodically and relies on the fact that their states will

eventually be consistent.

5.1.7.3 The Policy

A policy consists of a set of actions run over the content identified by the predicate.

The scope of action of a policy is defined by the codomain of its context. A policy consists

of an apply procedure and a check function (see Manifest 5.18). The goal of the apply

procedure is to change the state of the SOS, for example by replicating content. The check

function, on the other hand, returns true if the state enforced by the apply procedure is

satisfied or false otherwise.

{

"type" : "Policy",

"guid" : <hash(apply, check)>,

"apply" : <code>,

"check" : <code>

}

Manifest 5.18: Policy Manifest.

The Apply Procedure

The purpose of the apply procedure is to perform some changes over the codomain of

the context for a given version. Examples of apply procedures are:

• Replicate atoms with a replication factor N.

• Compress the atoms that are referenced by the version processed.

• Replicate only the manifests of a version and its components (no atom transfers)

with a replication factor N.

• Migrate atoms from one node of the codomain to another node, always within the

codomain.
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• Create a new version of the atom, with a different format (e.g., from jpeg to png).

• Generate multiple atoms with different data formats (e.g., to generate videos of

different quality for different screen sizes and/or device).

Code 5.19 is an example of the apply procedure to replicate data by some given factor

over the codomain expressed in Java.

1 void replicate(NodesCollection codomain, GUID guid, int factor) throws PolicyException {

2 try {

3 Manifest version = getManifest(guid);

4 Manifest content = version.content();

5 if (content.getType() == ATOM) {

6 NodesCollection nodes = filter(codomain, NodeType.Storage);

7 addAtom(content.getAtom(), nodes, factor);

8 }

9 } catch (Exception e) {

10 throw new PolicyException("Unable to replicate atom properly");

11 }

12 }

Code 5.19: Policy apply function to replicate atoms over the codomain. This function is expressed

in Java code.

The Check Function

The check function is a boolean-valued function that verifies that the state of the SOS

satisfies the conditions enforced by the apply function within the specified codomain for a

given asset’s version. Examples of check functions are:

• Atoms are replicated at least N -times over the codomain.

• Atoms are compressed.

• Manifests only (no atoms) are replicated at least N-times.

• Atoms are migrated from a given node to another one.
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Code 5.20 is an example of the check function that checks that the number of replicas

over the codomain is correct.

1 boolean isReplicated(NodesCollection codomain, GUID guid, int factor) throws PolicyException {

2 try {

3 Manifest version = getManifest(guid);

4 Manifest content = version.content();

5 if (content.getType() == ATOM) {

6 int numberOfReplicas = 0;

7 for(Node node:codomain) {

8 if (nodeHasData(node, guid)) {

9 numberOfReplicas++;

10 }

11 }

12 return numberOfReplicas >= factor;

13 }

14 } catch (Exception e) {

15 throw new PolicyException("Unable to check if atom is replicated properly");

16 }

17 }

Code 5.20: Policy check function that checks whether data is correctly replicated over the

codomain. This function is expressed in Java code.

Number of Policies

A context can have zero, one, or more policies. The number of policies determines the

behaviour of the context, how it affects the rest of the Sea of Stuff, and the time to run

the context:

• Zero policies: the context is used simply to classify and aggregate data via the

predicate.

• One policy: the context applies the policy to the data associated with the context

over the codomain. The cost of running the context depends on the cost of running

its predicate as well as its policy.

• Multiple policies: the context defines a richer and more complex behaviour by

applying multiple policies. Policies are executed sequentially in the order specified
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by the context definition. When a context has more than one policy, there is a

possibility for conflicts to occur (e.g., one policy replicates content while another one

deletes it).

Conflicting Policies

One of the main challenges when designing policies is the ability to avoid conflicts

between them. Conflicts results from contradicting policies, belonging either to the same

context or different ones, that operate over the same content (in the case of two different

contexts, their codomains must overlap). For example, take into consideration the following

three policy apply procedures:

• P1 : Replicate content at least three times over nodes A, B, C, and D.

• P2 : Replicate content at most twice over nodes A, B, and E.

• P3 : Replicate content at most twice over nodes F, G, and H.

In this case, an entity that is replicated at least three times by P1, then it is forced to

be replicated at most twice by P2, thus invalidating P1. P3 does not conflict with P1 or

P2 because it operates on a disjoint codomain (nodes F, G, and H). In the current design

of the SOS, conflicts are avoided by limiting the scope of what policies can do.

Nonetheless, restricting the scope of action of policies also limits the overall usefulness of

the contexts as a way to automatically manage data in a distributed system. For example,

the delete operation is one that can lead to conflicting policies, but it can also allow a

context to control how data moves within the codomain.

5.1.7.4 Failure Handling

High availability and reliability are key properties of a fault tolerant distributed system

that can be achieved through redundancy. In the SOS, contexts can be used to make

contents resilient against faults. Examples are contexts with policies that replicate data a

certain number of times or policies that apply error-correction techniques (e.g., Hamming

code) over the stored data. Not only policies can be used to build a better fault tolerant
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system, but the policies themselves are designed to detect failures via the check functions.

For instance, a check function for a data replication policy is able to verify that data is

replicated according to the rules specified by the policy (see Section 5.2.2.3).

Finally, the computational work units of a context are run on each node of the defined

domain independently of the state of any other node in the domain. Thus, the failure

of a node does not affect the rest of the nodes in the same domain in terms of what

data is identified by the context, via the predicate, and what changes are made over the

codomain, via the policies. However, the synchronisation of the instances of the context

can be affected and consistency is eventually reached when all the nodes in the domain

run correctly.

5.1.7.5 Context Life Cycle

The life cycle of a context and its computational work units is described by the following

four states (see Figure 5.21a):

• Created/Updated. This state is defined by a context that has just been created

or updated (i.e., a new version of the context is created).

• Run. A context is in this state when at least one of its computational work units is

being executed.

• Idle. This is the state between the runs of the computational work units.

• Inactive. A context becomes inactive by explicit action of a user. An inactive

context is not run until it is re-activated by the user.

Figure 5.21b projects the context life cycle reported above over time. Different colours

are used to highlight the different states of the context. After the context is created or

updated (in red), the run state is reached. A context is in its run state whenever its

predicate (in green), policy-apply (in violet), and policy-check (in azure) functions are

run. The context is idle (in grey) in between all the runs of its computational work units.

No computation is run while the context is inactive (in dark green).
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Figure 5.21: (a) Diagram showing the life cycle of a context; (b) timeline showing the life cycle of
a context.

In the current implementation of the SOS, presented in the next chapter, the predicate,

apply, and check functions are scheduled on a periodic basis and independently of one

another so that the execution of one phase is not dependent on the execution of another

phase. Moreover, computational units can be run in parallel, improving the throughput of

the contents processed. Finally, the life cycle has been designed so that the check function

of a given context is always run just before its apply procedure is executed, so that it is

possible to establish whether the policy is satisfied or the apply procedure needs to be run.
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5.1.8 Summary of the Sea of Stuff Model

This section has presented the Sea of Stuff model in terms of its five sub-models:

• Node model: defines nodes, the access points to the SOS.

• Data model: abstracts data from locations, how it is collected together, and how

it is versioned.

• Metadata model: describes how data or collections are enriched with metadata.

• User-Role model: defines the user-role relationship and how the role entity is used

to sign and protect SOS entities.

• Context model: describes computation that can be run over multiple nodes in

order to manage data automatically.

Figure 5.22 illustrates all the different types of entities of the SOS model. Each sub-

model has a very precise set of functions within the overall model, as explained so far.

For example, data can only be addressed via atoms and manifests signed by roles only.

However, new relationships between different components of the model can also be defined

since all entities are identified by GUIDs of the same namespace (see Conclusions and

Future Work Chapter).

The ability of ‘mixing’ the components of the SOS model to design new systems and/or

features is at the core of the SOS itself. The model presented in this work should not be

taken as the definite answer to all the storage problems of today and the future. Instead,

the author of this thesis suggests the SOS as a starting point for solving such problems,

thus the ability to modify and evolve the proposed model is fundamental.
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Figure 5.22: Overview diagram of the SOS model.

5.2 The Sea of Stuff Architecture

This section explores the architecture that characterises the structure and behaviour of

the Sea of Stuff as a distributed system of nodes. Section 5.2.1 re-introduces the concept

of node in relation to the node-model described above and how it interacts with the rest

of the SOS. Section 5.2.2 describes the services provided by the node and their interaction

with the rest of the SOS.
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5.2.1 The Node

A SOS node is a physical device that belongs to the SOS network93 and is identified

by a GUID, has a pair of keys to digitally sign/verify network requests, and provides a set

of services to manage the SOS model (see Section 5.1.3 for the node model). This section,

and the ones to follow, will address how a node works, what services it provides and how

it interacts with the rest of the Sea of Stuff.

5.2.1.1 Node Requests

The pair of keys associated with a node serves two functions: generating the GUID of

the node, as seen in Section 5.1.3, and to signing/verifying requests between nodes.

One of the challenges in network communication is to ensure that requests between

nodes are secure from attackers and that nodes can trust the received requests. The

SOS provides authentication, non-repudiation, and integrity over nodes’ communication

by signing outgoing requests. The diagram in Figure 5.23 illustrates how network requests

are signed/verified by nodes. In this example, there are two nodes (ABC and DEF), with

node ABC making a request to node DEF. When node ABC prepares the request for node

DEF, it adds the HTTP header sos-challenge to the request, sets its value to a random

string, and then signs the request using its private key. The resulting signature is sent along

with the request and can be verified by node DEF using the public key of ABC. Similarly,

node DEF signs the response to node ABC using its private key. For this mechanism to

work, a node should have knowledge of the other node’s public key, so that the signatures

can be verified.

Signing network requests makes the SOS more resistant to man-in-the-middle (MITM)

attacks, because the attacker must know the private key to sign and perform valid requests

on behalf of someone else. It should also be noted that the random string that needs to

be signed should be long enough as to avoid that an attacker can learn what signature

corresponds to what random string by eavesdropping, knowledge which is useful for replay

attacks. In the current implementation the random string is 1024 bits long.

93Locatable via an IP address.
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Node ABC Node DEF
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Figure 5.23: Diagram showing how requests between two nodes are signed.

Further, network requests can be encrypted using a similar pattern. The security of

the SOS can also be improved by using HTTPS instead of its unencrypted version HTTP.

The current prototype, however, does not support HTTPS requests.

5.2.2 Services

A SOS node provides six services, each designed around a specific aspect of the SOS

model:

• Manifest-Data management service (MDMS): manages manifests and allows

manifests and data stored in the SOS to be found.

• Node management service (NMS): allows nodes in the SOS to be discovered.

• Storage management service (SMS): manages the storage of atoms.

• Metadata management service (MMS): provides a metadata extraction interface

and abstracts the location of metadata.

• User-Role management service (URMS): manages users and roles.

• Context management service (CMS): manages contexts within the nodes and

across the domain and codomain of contexts.
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A node’s implementation is configurable so that users can decide what services to ex-

pose via the REST API and which to keep private. As a result, the SOS network can have

highly specialised and optimised nodes for a given service, or nodes that just have access to

the SOS but do not provide any service to other nodes. The resulting distributed system

is similar to an asymmetric “shared-nothing” file system (see Section 2.2.4.3). An asym-

metric system is usually more complex of a standard client-server architecture, however

the ability to configure what services a node exposes to the rest of the network gives the

SOS architecture the potential to adapt its structure and behaviour based on the state of

the network itself. For example, storage nodes in part of a network can be made available

dynamically when there is a high-demand for storing content.

5.2.2.1 Manifest-Data Management Service - MDMS

The manifest-data service is responsible for the management of all the types of manifests

in terms of storage, querying and deletion. All other services interact with the MDMS -

locally to the node - whenever:

• A manifest has to be stored.

• A manifest has to be retrieved.

• A manifest has to be deleted.

• All manifests of some given type have to be found.

• All versions of an asset have to be found.

• The tips or head versions of an asset have to be found (operations valid within the

local node only).

Code 5.21 describes the MDMS interface using Java code.

1 void addManifest(Manifest manifest, boolean storeLocally, NodesCollection nodes, int replication);

2

3 Manifest getManifest(GUID guid) throws ManifestNotFoundException;

4 Set<GUID> getManifestsRefs(ManifestType type);
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5

6 void delete(GUID guid) throws ManifestNotFoundException;

7

8 // Methods valid for Assets and Contexts only.

9 Set<GUID> getVersions(GUID invariant);

10 GUID getHead(GUID invariant) throws HeadNotFoundException;

11 void setHead(GUID invariant, GUID guid);

12 Set<GUID> getTips(GUID invariant) throws TipNotFoundException;

Code 5.21: Basic MDMS API.

1 POST /sos/mdms/manifest # add manifest to node

2 GET /sos/mdms/manifest/guid/{guid} # get manifest with given GUID

3 GET /sos/mdms/manifest/guid/{guid}/challenge/{challenge} # challenge node for possession of manifest with given GUID

4 DELETE /sos/mdms/manifest/guid/{guid} # delete manifest with given GUID

5 GET /sos/mdms/version/invariant/{invariant} # get all the known versions for the given asset

REST API 5.22: MDMS REST API.

The operations to add a manifest to and get a manifest from the SOS are explained in

more details in the next subsections.

Adding Manifests

The operation of adding a manifest to a node via the MDMS involves two steps: (I)

adding the manifest into the node internal storage and (II) replicating it to the rest of the

SOS, if specified. Figure 5.24 explains these two steps using a flowchart diagram. There are

two important aspects shown in the diagram: a manifest can be stored locally or not and

the replication process is an asynchronous task, so that the node can continue operating

normally while the task is carried out.

Furthermore, it should be noted that the MDMS has to interact with the node discovery

service to find the nodes where to replicate the manifest.
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Figure 5.24: Flowchart diagram showing how manifests are added to a node and, optionally,
replicated to multiple nodes of the SOS.

Finding and Getting Manifests

Manifests stored locally in the node are directly found by the MDMS through its data

structures and retrieved from the node storage. If the manifest is not stored in the local

node, other MDMS nodes are interrogated until the manifest is found. In this case, the

interaction between the node and the rest of the SOS is synchronous.
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Figure 5.25: Flowchart diagram showing how manifests are found and retrieved from the MDMS.
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5.2.2.2 Node Management Service - NMS

The node discovery service provides two main functions: (I) enabling a node to be

registered into the SOS and (II) allowing nodes in the SOS to be found (see Code 5.23).

Nodes are represented as manifests, thus the NMS interacts with the MDMS to store and

retrieve all the node manifests. The NMS provides the ability to find nodes in the SOS by

their GUIDs or based on the services they provide. To provide a uniform behaviour, the

NMS provides these features by querying the MDMS for the matching node manifests.

1 void registerNode(Node node, boolean localOnly) throws NodeRegistrationException;

2 Node getNodeManifest(GUID guid) throws NodeNotFoundException;

3 Set<GUID> getNodes(NodeType type);

4

5 deleteNode(GUID guid) throws NodeNotFoundException;

Code 5.23: Basic NMS API.

1 POST /sos/nms/node # register node (passed in the body of the request as JSON)

2 GET /sos/nms/node/guid/{guid} # get node manifest with given GUID

3 GET /sos/nms/service/{service} # get nodes that match type of service

4 DELETE /sos/nms/node/guid/{guid} # deletes the node with the given GUID

REST API 5.24: NMS REST API.

Joining the SOS

A node joins the SOS by registering itself with a known NMS node. When the node is

started, it contacts its known bootstrap nodes, which make the node known to the rest of

the SOS.

Finding nodes

A node is found through the NMS service by interrogating the local node and the known

NMS nodes, via the getNode(GUID guid) method (see Code 5.23). Other NMS nodes are

queried through the HTTP call GET /sos/nms/node/guid/guid (see REST API 5.24). In

the reference implementation presented in Chapter 6, nodes are found by interrogating the

already-known nodes, but a DHT or more advanced techniques could also be implemented.
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5.2.2.3 Storage Management Service - SMS

The SMS provides an abstraction over the storage of atoms through four main functions

(see Code 5.25 for the SMS API):

• Adding atoms to the SOS.

• Getting atoms from the SOS.

• Challenging the local node to prove its possession of a given atom.

• Deleting atoms from the SOS.

1 AtomManifest addAtom(AtomBuilder atomBuilder) throws StorageException; // The AtomBuilder object

contains the information about the atom to be added

2

3 Atom getAtomContent(AtomManifest atomManifest) throws AtomNotFoundException;

4 Atom getSecureAtomContent(SecureAtomManifest atomManifest, Role role) throws AtomNotFoundException;

5

6 GUID challenge(GUID guid, String challenge);

7

8 void deleteAtom(GUID guid) throws AtomNotFoundException;

Code 5.25: Basic SMS API.

1 POST /sos/sms/atom # add atom to storage node

2 GET /sos/sms/atom/guid/{guid} # get atom with given GUID

3 GET /sos/sms/atom/guid/{guid}/protected # get protected atom with given GUID

4 GET /sos/sms/atom/guid/{guid}/challenge/{challenge} # challenge node for possession of atom with given GUID

5 DELETE /sos/sms/atom/guid/{guid} # delete atom with given GUID

REST API 5.26: SMS REST API.

Add Atoms

Atoms are added to a node and to remote storage nodes through the SMS. The process

of adding atoms to a node and to the rest of the SOS is similar to the one for adding

manifests. However, as illustrated by the flowchart in Figure 5.26, the atom can also be
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encrypted using the approach described in Section 5.1.6.3. An atom manifest is created

after the atom is stored into the node and added to the MDMS. Data replication is per-

formed asynchronously over a set of nodes (e.g., the codomain of a context) and the atom

manifest is updated accordingly with the new locations.

Alternatively, the atom can be replicated once to a storage node, letting the remote

node perform the rest of the replication over the specified nodes until the replication factor

is satisfied.

Add Atom

Node

Sea of Stu�Locally?

Store in node

Repl. 
Factor > 0

Yes

YesNo

No

Atom GUID

Replicate until 
replication factor 

is satis�ed 

Async

When async 
task is 

submitted

Protect?

Protect Atom

Yes

No Store Atom 
Manifest

Update Atom 
Manifest

Via MDS

Via MDMS

Find Storage 
node via NMS

If replicated

Figure 5.26: Flowchart diagram showing how atoms are added to the SMS and, optionally, repli-
cated to other nodes of the SOS. It should be noted how the SMS interacts with the NMS to find
the nodes where to replicate the atom and the MDMS to add/update the atom manifest.

Get Atoms

Atoms are retrieved directly from the locations stored in the atom manifest. If none of

the locations returns the correct data, other nodes — previously known or via the NMS —

in the network in the SOS providing storage service are contacted. Retrieving protected

atoms, however, requires a few additional steps. First of all, the user requesting the atom
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must specify the role to use to decrypt the data. Then, the atom is decrypted and returned

to the user as explained in Section 5.1.6.3.

Proof of Atom Possession

An important property for nodes of a distributed system is the ability to prove their

possession of data without necessarily having to send the data to the node requesting such

proof. In the SOS, for example, contexts can have check policy functions to ensure that

atoms are replicated at least N -times. Clearly, a node can retrieve all the replicas and

verify their integrity. However, this approach is expensive and adds unnecessary stress to

the SOS network. In alternative, a node can challenge the nodes storing the replicas using

the approach below (see also Figure 5.27):

1. The local node gets the atom in question and temporarily appends a random string,

the challenge, to it.

2. A hash of the temporary data is calculated, h′.

3. The local node challenges the node that might have the replica, for the given atom’s

GUID and the challenge string.

4. The remote node gets the atom, appends the challenge and calculates the hash of

the temporary new data, h′′.

5. The remote node sends h′′ back to the local node.

6. There are two possible outcomes:

• Case 1: h′′ matches h′, therefore the remote node has proved possession of the

atom.

• Case 2: h′′ does not match h′, therefore the remote node was unable to prove

possession of the atom.

The principle behind this technique is that only nodes that have the atom can properly

generate h′′ after appending the challenge string to it. Long randomly generated challenge

162



5.2. The Sea of Stuff Architecture

Node ABC Node DEF

challenge(GUID = 123fe, challenge = XYZ)

h'' = 098a5

- Find atom manifest with GUID = 123fe
- Get atom from the manifest
- Append challenge string XYZ to atom
- Calculate hash h'' of new data
- Return h'' of challenge

- The received hash h'' 
matches h' as calculated at 
this node. Challenge passed.

Atom

XYZ
G

U
ID

 =
 1

23
fe

h'
 =

 0
98

a5

h'' = 204b0
- The received hash h'' does 
not match h' as calculated at 
this node. Challenge failed.

Ca
se

 1
Ca

se
 2

Figure 5.27: Diagram showing a node, ABC, requesting proof of possession for the atom 123fe to
node DEF.

strings should be used as a protection against replay attacks.

Finally, the MDMS can be extended to use the same approach to prove the possession

of a manifest by appending a challenge string to the end of a manifest (represented as a

JSON document).

5.2.2.4 Metadata Management Service - MMS

The metadata management service is the component of the node responsible for ex-

tracting metadata from atoms and/or compounds and storing metadata manifests (see

Code 5.27). The methods to add and retrieve the metadata to and from the MMS are

simply abstractions over the MDMS. The complexity of the metadata extraction process

depends on the amount and precision of the metadata to be extracted. The ability to have

configurable nodes allows the SOS to have highly specialised MMS nodes used solely for

the extraction and storage of the metadata. This feature is particularly useful in a sys-

tem where some devices have limited capabilities, such as smartphones, and the expensive

computation is moved to some more powerful servers.

1 void addMetadata(Metadata metadata);

2 Metadata getMetadataManifest(GUID guid) throws MetadataNotFoundException;

3
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4 // Extracts metadata from some content identified by a GUID

5 Metadata processMetadata(GUID guid) throws MetadataException;

6

7 void deleteMetadata(GUID guid) throws MetadataNotFoundException;

Code 5.27: Basic MMS API.

1 POST /sos/mms/metadata # add metadata to MMS node

2 GET /sos/mms/metadata/guid/{guid} # get metadata with given GUID

3 POST /sos/mms/metadata/process # process metadata at MMS node

4 DELETE /sos/mms/metadata/guid/{guid} # delete metadata with given GUID

REST API 5.28: MMS REST API.

5.2.2.5 User-Role Management Service - URMS

The user-role service handles users and roles within the SOS. The URMS provides the

basic functionalities to create, add, and retrieve users and roles to and from the node. An

important aspect of the URMS is also the management of the private-public keys associated

with the users and the roles. Moreover, the URMS provides utility functions to enable one

role to grant access on a given SOS entity to another role (see Section 5.1.6.3).

1 void addUser(User user);

2 User getUserManifest(GUID userGUID) throws UserNotFoundException;

3 Set<GUID> getUsers();

4

5 void addRole(Role role);

6 Role getRoleManifest(GUID roleGUID) throws RoleNotFoundException;

7 Set<GUID> getRoles(GUID userGUID) throws RoleNotFoundException;

8

9 deleteUserRole(GUID guid) throws EntityNotFoundException; // Deletes the user/role matching the GUID

10

11 grantAccess(GUID protectedEntity, Role granterRole, Role granteeRole) throws EntityNotFoundException;

Code 5.29: Basic URMS API.

1 GET /sos/urms/guid/{guid} # get user/role with given GUID

2 GET /sos/urms/user/{guid}/roles # get known roles of given user

3 POST /sos/urms/user # add user to URMS node
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4 POST /sos/urms/role # add role to URMS node

5 DELETE /sos/urms/guid/{guid} # delete user/role with given GUID

REST API 5.30: URMS REST API.

5.2.2.6 Context Management Service - CMS

The context management service manages the contexts and its computational work

units in terms of storage and scheduling. The storage management of the context, predi-

cate, and policy manifests relies on the MDMS. Additionally, the CMS is responsible for

compiling the predicate and policy code, embedded in their respective manifests. The CMS

schedules all the predicate, policy-apply and policy-check tasks separately as described by

the context life cycle.

1 GUID addContext(ContextBuilder contextBuilder);

2

3 Context getContextManifest(GUID guid) throws ContextNotFoundException;

4 Set<GUID> getContents(Context context);

5 Set<GUID> getContexts();

6

7 void deleteContext(GUID invariant) throws ContextNotFoundException;

Code 5.31: Basic CMS API.

1 POST /sos/cms/context # add context to CMS node

2 GET /sos/cms/context/guid/{guid} # get context with given GUID

3 GET /sos/cms/context/guid/{guid}/contents # get contents for given context

4 DELETE /sos/cms/context/invariant/{guid} # delete context with given GUID

REST API 5.32: CMS REST API.

The context and its computational work units are distributed over the context’s domain

and run at the respective nodes. If a node within the domain cannot run the context over

its assets, then the assets are distributed over all the nodes that can run the context.
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5.2.3 Considerations

The SOS defines a model for managing data as well as an architecture of services which

understand and control the different aspects of the model. The SOS, however, does not

define how nodes and services are organised and whether there is any relationship between

nodes and the content they store. Distributed systems can be centralised, decentralised,

or a mix of the two. In the SOS, as presented in this chapter, nodes are managed as

in an unstructured P2P network and both nodes and content are distributed and found

greedily. The general design of the SOS can be supported by a P2P architecture as well as

a client-server - or centralised - architecture.

The scope of this thesis is to present a generic model for managing data in a distributed

system. Thus, further discussion about the type of architecture underlying the SOS is left

for discussion to Chapter 7 — Comparative Evaluation — and Chapter 9 — Conclusions

and Future Work.
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The previous chapter presented the design of the Sea of Stuff model and its architecture.

A prototype of the SOS has been developed using the Java programming language (version

8) and external libraries where needed (e.g., to extract metadata from atoms or to build a

RESTful server).

This chapter describes the most important aspects of the reference implementation

of the SOS and gives two examples of applications built on top of the SOS. Section 6.1

describes the most important implementation details about the services provided by a SOS

node, while Section 6.2 shows how content is stored in the local file system. Section 6.3

briefly illustrates how nodes can be configured to have different behaviours and expose

different services. Section 6.4 describes two example applications developed on top of a

SOS node. Finally, Section 6.5 discusses the limitations of the prototype.

The prototype developed for this work is available as free software under the GNU

General Public License v3.0 at https://github.com/sea-of-stuff

6.1 Services

6.1.1 Storage Management Service

The SMS is responsible for storing, retrieving, and deleting atoms across the SOS (see

Section 5.2.2.3). Proof of atom possession is also provided through the SMS.

Storing Atoms in the Sea of Stuff

Storing an atom is a four step process (see Code 6.1):
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1. The atom is saved to the node’s storage using a randomly generated name, since its

GUID is not known yet.

2. The GUID of the atom is calculated and the name of the saved atom is updated.94

3. The manifest for the atom is created and saved to the node via the MDMS.

4. Optionally, the atom is replicated to other SOS nodes (as specified by context’s

policies).

The node’s storage is where atoms, manifests, and all persistent internal data structures

are stored (see Section 6.2 for more information about its structure). The prototype uses

the castore utility library to abstract the node’s storage, so that any form of data, from

atoms to manifests alike, can be stored in the node without any knowledge of the underlying

storage. Castore provides a common storage abstraction for the local file system and cloud

storage services, such as Amazon S3, Dropbox, and Google Drive (see Appendix C for

more information on castore).

The SMS is also responsible for replicating atoms to other nodes in the SOS. Atoms are

replicated by calling the REST end-point POST /sos/sms/atom95 of a given node.96 The

atom is replicated to as many nodes as specified by the replication factor.97 The retrieval

of atoms from remote nodes is handled similarly by making calls to the appropriate REST

end-point.

1 /**

2 * Adds an atom to the SOS and returns an AtomManifest.

3 * @param AtomBuilder - This is an object containing the information to add the atom.

4 */

5 AtomManifest addAtom(AtomBuilder atomBuilder) throws StorageException {

6 Set<LocationBundle> locations = storeAtom(atomBuilder);

7 GUID guid = generateGUID(atomBuilder);

94The implementation presented in this thesis uses the Apache commons-codec library for hashing data.
The library is available at the following URL: https://commons.apache.org/proper/commons-codec/ [last
accessed on 30/04/2018].

95The atom’s bytes are sent as part of the request’s body.
96The node where the atom is replicated must be configured so that its SMS is exposed via REST.
97The replication factor constraint may not be satisfied if some of the nodes are unavailable.
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8 renameAtom(guid, locations);

9

10 AtomManifest atomManifest = ManifestFactory.createAtomManifest(guid, locations, atomBuilder);

11 manifestsDataService.addManifest(atomManifest);

12

13 int replicationFactor = atomBuilder.getReplicationFactor();

14 if (replicationFactor > 0) {

15 Task atomReplicationTask = new AtomReplicationTask(atomManifest,

16 atomBuilder.getCodomain(), // List of nodes where the atom can be replicated

17 replicationFactor,

18 this, // SMS, needed to update the manifest with replica locations

19 nodeDiscoveryService); // Needed to be able to contact the replica nodes

20 TasksQueue.instance().performAsyncTask(atomReplicationTask);

21 }

22

23 return atomManifest;

24 }

Code 6.1: Java code for the add atom operation of the SMS.

Retrieving Atoms in the Sea of Stuff

In the current SOS prototype, the retrieval of atoms relies on the locations stored within

the atom manifest and any locations that the MDMS has associated with the atom to be

retrieved. In addition, locations are processed in a specific order, so that the local node is

interrogated before any remote location. The remote locations are ordered based on their

type (i.e., cache, persistent, external).

1 Atom getAtom(IGUID guid) throws AtomNotFoundException {

2 Manifest manifest = mdms.getManifest(guid);

3 if (manifest.getType() == ManifestType.ATOM) {

4 Atom atom = (Atom) manifest;

5

6 // Get known locations about atom, which can be stored in the atom or cached in the MDMS.

7 // Locations are ordered as follows:

8 // - Local node

9 // - Marked as cache

10 // - Marked as persisted

11 // - Marked as external
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12 Set<Location> locations = mdms.getLocations(atom);

13 for(Location location:locations) {

14 Atom atom;

15 try {

16 atom = location.getAtom();

17 } catch(AtomNotFoundException e) {

18 continue; // Try next location

19 }

20 return atom;

21 }

22 }

23

24 throw new AtomNotFoundException(guid);

25 }

Code 6.2: Java code for the get atom operation of the SMS.

Deleting Atoms in the Sea of Stuff

When deleting atoms from the SOS, the SMS iterates over all the known locations

for the atom and issues a deletion request for each of them. The global deletion of an

atom (as well as manifests) cannot be guaranteed because it is not possible to verify that a

remote node has actually deleted it. Further, global deletion cannot be guaranteed because

keeping track of all the replicas of an atom is infeasible.

Proof of Atom Possession

Proof of atom possession is implemented following the algorithm described in Sec-

tion 5.2.2.3[Proof of Atom Possession].
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6.1.2 Manifest-Data Management Service

The implementation of the MDMS is based on a three layer manifest storage abstraction

(see Figure 6.1):

• Cache layer. Stores a limited number of manifests in-memory (8192 by default),

providing fast queries and read access for manifests. The cache implements a least

recently used (LRU) policy, so that recently used manifests are faster to access. A

LRU cache improves access over content that has been accessed recently. Potentially,

other caching strategies could be used if one wishes to optimise the system for different

use cases.98

• Local layer. Stores the manifests to the local node’s storage, similarly to how

atoms are stored by the SMS. If a manifest is found, then the cache layer is updated

accordingly.

• Remote layer. This is an abstraction over all other nodes of the SOS. If a manifest

is found, then the cache and local layers are updated accordingly.

98Note that this is a cache in the traditional sense, unlike the cache hint used within an atom manifest,
which is used solely to highlight locations that expose better data access properties.
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Figure 6.1: Flowchart diagram showing the interaction between the three storage layers of the
MDMS for the add manifest operation: the cache layer is interrogated first, then the local layer
is checked, and finally the node interacts with the remote layer as last resort.
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6.1.3 Metadata Management Service

The MMS provides two types of services: (I) the storage and management of the

metadata model and (II) the extraction of metadata from some given data. The first service

is provided by managing the metadata manifests through the MDMS. The extraction of

the metadata is achieved by processing the data using the Apache Tika™ toolkit99, which

provides a set of tools to detect and extract metadata and text from data of different type

(e.g., doc, docx, pdf, png, and jpeg).

6.1.4 Node Management Service

The implementation of the NMS consists of a basic thin wrapper around the MDMS.

The NMS also provides a set of utility methods to find nodes based on the services provided.

For example, the NMS can be queried to return the known nodes that provide a storage

services or a metadata service. Node filtering is particularly useful when other services

need to interact with the SOS through the NMS.

6.1.5 User-Role Management Service

The URMS service, like the MMS and the NMS services, is implemented as a thin

wrapper around the MDMS. In addition, the URMS manages the keys associated with

users and roles, which are all stored in the node’s storage (see Section 6.2).

6.1.6 Context Management Service

The CMS provides two main functions: managing the context, predicate, and policy

manifests and scheduling the computation associated with the context. The management

of the context and its components is handled through the MDMS. The previous chap-

ter described the context life cycle (see Section 5.1.7.5), how the computational units are

scheduled periodically, and how contexts change over time. The reference implementation

presented in this chapter schedules the computational units using a Java ScheduledExecu-

torService, which allows tasks to be run periodically. The configuration of the node defines

how often the computational units are run. The CMS also schedules tasks for distributing

99Apache Tika. https://tika.apache.org/ [last accessed on 27/03/2018].
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contexts over their domains and synchronising the contexts’ contents among nodes of the

domain.

6.1.7 Node Maintenance

The node maintenance mechanism is responsible for controlling how much data and how

many manifests are stored in a node and for removing any data or manifest that is replicated

a sufficient number of times and/or marked as cache (as described in Section 5.1.4.1[Atom

Manifest ]). The maximum amount of data/manifests that can be stored can be set in the

node’s configuration.

6.1.8 REST API

The services provided by the node are exposed to the other nodes of the SOS via HTTP,

with the functions described by a REST API, as described in Section 5.2.2 of the previous

chapter. The REST API is built using Jersey100, a framework that implements JAX-RS,

and runs on top of Jetty101, a lightweight web server and servlet engine. The mapping

between the REST API and the methods provided by its services is 1:1, so the REST API

is simply a thin wrapper around the node services.

6.1.9 Instrumentation

The implementation of the SOS presented in this work has been instrumented to record

user-defined metadata (e.g., time to run a particular method, number of iterations of a

particular loop, etc.). The instrumentation of the node is enabled for the experiments

described in Chapter 8. Code 6.3 shows an example of code instrumentation for the

runPredicatesPeriodic() method, where the instrument object records the overall time it

takes to run the predicate for all the managed contexts.

1 void runPredicatesPeriodic() {

2 ThreadSettings predicateThreadSettings = getPredicateThreadSettings();

3 service.scheduleWithFixedDelay(() -> {

4

5 long start = System.currentTimeMillis();

100Jersey. RESTful Web Services in Java. https://jersey.github.io/ [last access on 23/02/2018].
101Jetty. https://eclipse.org/jetty/ [last access on 23/02/2018].
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6 for (Context context : getContexts()) {

7 runPredicate(context)

8 }

9 long end = System.currentTimeMillis();

10 Instrument.instance().measure(StatsTYPE.thread, StatsTYPE.predicate, "Thread_Predicate",

start, end);

11

12 }, predicateThreadSettings.getInitialDelay(), predicateThreadSettings.getPeriod(),

TimeUnit.SECONDS);

13 }

Code 6.3: Java code describing the instrumentation of the runPredicatesPeriodic() method.

The code of the presented prototype is instrumented for multiple services. The inter-

ested reader can inspect the source code of the SOS.102

102SOS - Sea of Stuff. Source code available at https://github.com/sea-of-stuff [last accessed on
30/03/2018].
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6.2 Node Storage

The entities of the SOS model and the persistent internal data structures of the node

are stored in the node’s internal storage, which is organised as follows:

• manifests/ This is the location where all the manifests are stored. A manifest is

stored as a JSON document and named using its GUID.

• atoms/ This is the location where all the atoms are stored. Atoms are named using

their GUIDs.

• keys/ This is the location where the keys of the users and roles are stored. The

digital signature algorithm used is SHA256 with RSA and key length of 512 bits.

The asymmetric encryption algorithm used is RSA with a key length of 2048 bits.

Keys are stored using the following file naming scheme:

– 〈User/Role GUID〉.key – private key for the digital signature of users and roles.

– 〈User/Role GUID〉.crt – public key for the digital signature of users and roles.

– 〈User/Role GUID〉.pem – private key for asymmetric encryption as used by

the roles.

– 〈User/Role GUID〉 pub.pem – public key for asymmetric encryption as used

by the roles.

• node/ This is the location where all the node internal databases, indices and caches

are stored as well as the node’s private and public keys.

• java/ This is the location where the compiled computational units are stored as

〈name〉.class files.

Figure 6.2 illustrates a typical example of node structure on the file system.
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sos

atoms

SHA256 16 25a366a90726c4f2aae072554552a5c606f4a0462982349f1e2fed8e0cc7c29b

SHA256 16 66feef39d5e4dddbbc211f6ce8f517be4a49859f68b4f589e67f73e223e8c86a

...

java

uk/ac/standrews/cs/sos/impl/context

SHA256 16 2230581b4234bdfe697b8707bd9a936063c33ccbbcdf6bf3f606136204f072db.class

...

keys

SHA256 16 2b4cd97d702dbcfcaff11e84bb7ba47e8fda9c9849235d68bb03bf8ef86cecd2.crt

SHA256 16 2b4cd97d702dbcfcaff11e84bb7ba47e8fda9c9849235d68bb03bf8ef86cecd2.key

SHA256 16 2b4cd97d702dbcfcaff11e84bb7ba47e8fda9c9849235d68bb03bf8ef86cecd2.pem

SHA256 16 2b4cd97d702dbcfcaff11e84bb7ba47e8fda9c9849235d68bb03bf8ef86cecd2 pub.pem

...

manifests

SHA256 16 01c748f22eade8555da2d4197e6394825b8affddf7559e7ebeebd42579220ccf

SHA256 16 0fa544753e238fee6676b3141667b07f5067257903f3d937c82f6151ba942947

SHA256 16 2230581b4234bdfe697b8707bd9a936063c33ccbbcdf6bf3f606136204f072db

SHA256 16 25a366a90726c4f2aae072554552a5c606f4a0462982349f1e2fed8e0cc7c29b

...

node

id rsa.crt

id rsa.key

node.db

cms.index

locations.index

manifests.index

manifests.cache

mdms.index

urms.index

Figure 6.2: Example of folder structure for the node internals.
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6.3 Node Configuration

The node’s settings can be specified through a configuration file that is processed when

the node is started. The main settings that can be controlled through the configuration

file are:

• Node hostname and port for the REST service.

• Settings for each service (e.g., NMS, MDMS, SMS, etc.).

• Internal store type (e.g. the local file system, Amazon S3, Dropbox, etc.) and path.

• Bootstrap nodes: list of already known nodes that are used to join the SOS. Nodes

are described in terms of their GUIDs, addresses, and public keys.

More information about the node configuration can be found in the Appendix A.1.

6.4 Example Applications

6.4.1 WebApp

The WebApp enables its users to understand the SOS model and interact with the node

and the SOS via the browser. The WebApp allows users to explore the underlying SOS

model, understand the relationship between the different entities of the model thanks to

visual aids, look at the manifest of each entity, or set the head of an asset. In particular,

the WebApp provides the following functionalities:

• Data management. Users are able to add and update assets in the SOS, either

as atoms or compounds. Figure 6.3 shows an example of how data is managed and

inspected via the WebApp.

• Users and Roles management. The WebApp’s users are able to create SOS users

and roles with arbitrary names.

• Context management. Users are able to create contexts, inspect their contents

over time, and monitor their scheduling.
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• Node management. Users can monitor the local node and the known remote

nodes. This feature is useful for demonstration purposes only.

Atoms and Compounds 
Upload panelWebApp Menu

DAG view selected 
SOS entity

Uploaded Assets (showing 
only the heads) with pre-
view and explore button 

Data Preview and Actions Manifest Preview 
and Actions

Actions’ buttons for 
the DAG

Type of content referenced 
by the head of the asset

Figure 6.3: Example view of the home page of the WebApp. The home page is divided in two
main parts: the left component allows used to add content to the SOS and view the added content,
while the right side allows users to explore how content is modelled and stored in the SOS.

6.4.1.1 Limitations

The WebApp is an application built on top of the SOS that allows users to interact

with the SOS and understand part of its model. However, the WebApp presents a number

of limitations that are listed here:
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• The UI/UX is not optimal, since the scope of the WebApp is simply the one to

demonstrate some of the features of the SOS.

• The deletion of assets, contexts, users, and roles is not supported.

• Contexts cannot be made inactive (see Section 5.1.7.5[Context Life Cycle]).

• The WebApp does not provide any search features. Future work on this direction

involves the building of a search engine based on the metadata model. The context

model, on the other hand, provides a mechanism to classify content based on its

metadata.

• The WebApp instance is accessible to anyone who has knowledge of the IP address

of the node where it runs. The current implementation of the WebApp should not be

run on production environments and/or without knowledge of its security weaknesses.

6.4.2 SOS-WebDAV Server

The SOS-WebDAV server is another application example built on top of a SOS node.

The purpose of the SOS-WebDAV is to allow users to operate on the SOS as they would

do on a file system. The Web Distributed Authoring and Versioning (WebDAV) protocol

is an extension of HTTP and “allows clients to perform remote web content authoring

operations” (RFC 2518 [221]). Similar to the HTTP protocol, WebDAV involves two

actors: a server that provides the resources and a client that acts upon the resources

stored in the server side. A resource is either a file or a directory. The WebDAV protocol,

unlike HTTP, provides authoring methods that enable (I) a wider range of operations over

the managed resources, such as copying and moving them across locations and collecting

them together; and (II) to describe resources using a richer syntax (expressed in XML).

The SOS-WebDAV server is based on the WebDAV server developed as part of the

asa (Autonomic Storage Architecture) project [222]. The WebDAV server design allows

an arbitrary file system to be served under the WebDAV protocol. The file system must
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implement the interfaces provided by the fs-sta project for files and directories.103

The main challenge for the integration between the WebDAV server and the SOS is the

mapping between the WebDAV resources, files and directories, and the SOS entities of the

data model, atoms and compounds. The simplest solution would be to create a single asset

that keeps track of all the resources stored on the server side. However, this solution tightly

binds a resource and its history to all other resources, and their respective histories, stored

in the node. One of the features of the SOS is that everything can be versionable, so a

different approach was adopted: each resource is represented as an independent asset that

refers either to an atom, for files, or a compound, for directories. Thus, compounds are

collections of versions, each representing a particular point in time of an asset, or resource.

Section 5.1.4.3[Versions with compounds of versions] explains this approach in more detail.

6.4.2.1 Limitations

Application layer file systems (ALFS, see Section 2.2.1.6), such as the ones built on top

of FUSE, have reasonably good IO performance, compared to system level file systems.

However, WebDAV is widely supported across many operating systems, such as MacOS,

iOS, Android, and Windows, while ALFS libraries, such as FUSE, require software instal-

lation on the client and ad-hoc implementations for each OS. Additionally, implementing

an ALFS tends to be complex and error-prone. On the other hand, an ALFS can provide

much better performance over a WebDAV service and does not require a running server,

which exposes a node to potential security risks.

The WebDAV server implementation presents some bugs which could not be solved

within the time-frame of this work. The most important bug of the WebDAV server is its

inability to handle large files.

Finally, the SOS-WebDAV support for the functionality provided by the SOS is limited

by the WebDAV protocol itself, which reflects the common file system metaphor. End-

users should use the SOS-WebDAV application together with the WebApp, in order to

have better control of the data, since not all operations supported by the SOS are available

103The Appendix C describes the WebDAV and fs-sta projects in more details.
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via the file system supported by the operating system.

6.5 Overall Prototype Limitations

The prototype presented in this work presents the following limitations and security

issues:

• Small files occupy an entire block in the file system. This is very inefficient. A

packing operation (similar to git) could be adopted.

• The SOS protocol is built on top of HTTP, which is an insecure protocol. As part of

future work, it is suggested to adopt HTTPS plus exploring the possibility to encrypt

requests using the public key of the contacted node.

• Predicate and policy functions are written using a set of ad-hoc functions provided

by SOS prototype. Future work should focus on providing a better definition of the

language for the context’s computational units.

• The MMS relies on Apache Tika, so the richness and accuracy of the metadata

associated to the assets is strictly dependent on the Tika component.

• Context synchronisation works under the assumption that different context instances

will eventually be consistent. However, no mechanism for resolving conflicts has been

built.

• Requests between nodes are not properly tracked, thus it is not possible to handle

circular requests between them. A circular request can happen when one node A

asks for some information to node B and node B, in exchange, asks for the same

information to node A. Circular requests are transitive (i.e., can involve one or more

intermediate nodes) and lead to a deadlock of the parts of the system involved.

In addition, the applications presented in this chapter have been designed and built for

demonstrational purposes only. The limitations outlined in the respective sections should

be taken into account by anyone wishing to work on this project in the future.
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Storage systems, as seen in previous chapters, are characterised by a significant number

of properties, from how data is represented to how it could be versioned or protected.

Evaluating all the properties of the Sea of Stuff experimentally against other systems

is unfeasible due to the large number of properties to take into account and the different

nature of the implementations of the systems.

This chapter evaluates the design of the SOS against the storage systems presented

in the Background and Literature Review chapters. The next chapter — Experimental

Evaluation — evaluates experimentally some specific aspects of the SOS, with a particular

focus on the context model.

The scope of the evaluation presented in this chapter is defined by the Hypothesis 1

(H1, see Section 1.3), the types of systems presented in the Background and Literature

Review chapters, and the design of the SOS. One of the main goals of the SOS is to re-think

the fundamental storage abstractions, such as the file and the directory. These abstractions

are evaluated comparatively throughout this chapter against the relevant storage systems.

This chapter is structured similarly to the Literature Review chapter, so that the SOS

can be compared against each class of storage systems. However, given the large number

of storage systems, only a selection of them for each storage type is chosen based on their

historical and/or current significance in the state of the art.
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7.1 Evaluation of Requirements

This section briefly evaluates the Sea of Stuff design and reference implementation,

presented in the previous chapters, against the requirements reported in Chapter 4.

7.1.1 End-User Requirements

3 EU-1 Location abstraction: data should be accessible irrespective of the location

where it is stored.

The SOS models data as content-addressable, thus de-coupling content and its location.

3 EU-2 Accessibility abstraction: data should be accessible irrespective of the loca-

tions from which it is accessed.

Accessibility abstraction is achieved together with location abstraction due to the

content-addressable nature of the model.

3 EU-3 Users and Roles: a user (e.g., Simone, Giulia, Al, Graham) should be associ-

ated to multiple roles (e.g., home, work, hobby, holiday, photography) and have a different

view of the SOS based on their current role.

The SOS models users and roles, which can be used to sign and protect entities of the

model or to simply define an ownership relationship. Moreover, users and roles can be

used to provide ad-hoc views of the SOS via contexts.

3 EU-4 Data Protection: users should be able to enforce arbitrary levels of data

protections in terms of what to protect and what encryption algorithms to use.

In the SOS, data can be protected at arbitrary levels of granularity through roles. The

quality of protection depends on the length and type of keys used.

3 EU-5 Versioning: it should be possible to version data and metadata at different

granularities.
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The SOS allows data and metadata to be versioned at arbitrary levels of granularity

through the asset entity.

3 EU-6 Automatic data management: users should be able to define rules to auto-

matically manage data in a distributed environment.

The SOS allows data to be automatically managed in a distributed system through the

context entity and the predicate and policy computational work units.

7.1.2 Model Requirements

3/7 M-1 Immutability: the components or entities of the model should be immutable.

All the entities of the model are immutable, except for the atom manifest. The im-

mutable entities are uniquely identified by a GUID and never change over time. The atom

manifest serves as a proxy entity for the atom and consists of a list of locations, for the as-

sociated atom, that can change over time. The identifier of the atom manifest is generated

by hashing the atom and it is immutable over time.

3 M-2 Integrity: it should be possible to verify the integrity of the content managed

through the model.

The GUID associated with each entity is a cryptographically secure hash that can be

used to verify its integrity. Changing even one bit of the entity’s content results in a new

GUID, thus failing the integrity test for the entity.

3 M-3 De-duplication: the model should support data de-duplication.

The SOS allows content de-duplication by storing duplicate entities, which have the

same GUID, only once within a given node.

3 M-4 Self-describing entities: entities should be self-describable (see Glossary of

Terms), so that no additional information is needed to use and process a given entity.
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All of the SOS manifests contain the necessary information about the entity they de-

scribe so that no further information is needed.

3 M-5 Independent entities: it should be possible to distribute content independently

of any other modelled entity.

The SOS allows entities to be distributed independently of one another.

3 M-6 Computational work: it should be able to define computational work that

runs over the stored content. It should be possible to distribute the computation across

the system.

Computational work is modelled through the context model and the predicate and

policy entities, which are used by the context to automatically manage content.

7.1.3 Architecture Requirements

3 A-1 CAP: the system should be AP compliant (see Section 2.1.5), so that data is

always available, assuming that it is reachable, and that the system is tolerant to network

partitions.

Data is always available as long as the nodes storing it are reachable. Tolerance to

network failure is in place for managing data as well as computation, via contexts.

3 A-2 Failure: the system should be able to cope with failures using an eventually

consistent model.

The SOS handles failures by replicating content via ad-hoc contexts. A context that is

run over a set of nodes is synchronised with an eventually consistent model.

3 A-3 Heterogeneity: the system should work independently of the type of hardware

and operating system it runs on.

The SOS model and architecture design are hardware and software independent. More-

over, the reference implementation presented in this thesis has been developed in Java and
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can be run over any machine supporting a JVM (with JDK version greater or equal than

1.8).

3/7 A-4 Horizontal scalability: the system should be able to scale horizontally (i.e.,

adding nodes to the system).

The SOS model could scale horizontally if it were to use a DHT to manage its content.

The implementation of a DHT for the SOS, however, was not the focus of this work.

3 A-5 Node configuration: it should be possible to configure a node in terms of what

services it provides to the system.

The reference implementation of the SOS presented in the previous chapter allows

nodes to configure what services to expose to the rest of the SOS.

3 A-6 Decentralisation: the system should be able to work without the need of a

central authority.

The SOS architecture does not rely on a central authority. A SOS node may depend

on other nodes that provide node discovery or storage services, but these are decentralised

services themselves (i.e., multiple nodes can provide such services).

3 A-7 RESTful API: a node should expose its services via a RESTful API.

The design architecture of the SOS provides the description of a RESTful API, which

has fully been implemented in the reference implementation.
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7.2 File Systems

7.2.1 The File Metaphor

The file is the primary entity of file systems. As explained in Chapter 2, the file consists

of data, attributes, and operations. However, the file abstraction is not always well un-

derstood, in particular when projected against the requirements of today [14]. The initial

file abstraction was defined around the CRUD (create, read, update, delete) storage oper-

ations. However, users nowadays perform file operations, such as move, duplicate, share,

synchronise, and version, which are not always comprehended, especially in a distributed

setting, where multiple users and machines interact with each other. The file-control block

structure, for instance, has remained mostly unchanged over the last six decades. Over

the years, most file systems have provided extended attributes supporting the recording

of richer metadata than just the file size, ownership, permissions, and timestamps of last

creation, last access, and last modification. The file extended attributes have been imple-

mented in multiple ways, from storing metadata within the file-control block structure to

using external data structures (e.g., the resource fork for HFS/HFS+ [129] or the metadata

indices for the Be File System [130]). In all of these solutions, however, the metadata is

still bound to data.

The SOS does not provide a file metaphor, but its data model abstractions - the

atom, compound, and asset - can be combined and used to support it. The SOS can model

data, exactly like the file abstraction, but it can do it so that its location is transparent

(see Glossary of Terms) to users. In addition, data integrity and versioning are built-in

features of the system. However, the most relevant aspect of the SOS model is that data

and its abstract representations are decoupled. This allows users of the SOS to understand

data for what it is — a sequence of bits — irrespective of where it is located, aggregated,

and versioned. In addition, the SOS models metadata as extrinsic to the data, unlike

the standard file systems approach. In a distributed system, this allows content to be

understood and processed through metadata only, without necessarily having to have a
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copy of the data.

Another attempt to extend the file metaphor, which is more similar to the SOS model,

is file tagging, where files are described by named keys, extrinsic to the file. The pStore

file system [135] implements tagging through RDF, thus providing a rich semantic schema

to record relationships between files and metadata. Composite data formats, such as

DCX [168] and the quFile [209], also extend the file abstraction in a similar fashion to the

SOS. Composite data formats are discussed in more detail in the relevant sections of this

chapter.

Other file metaphors are discussed and compared against the SOS ones in the relevant

sections below.

7.2.2 The Directory Metaphor

The second fundamental abstraction of file systems is the directory. The directory is

the metaphor that enables content to be organised in hierarchies. The SOS compound

can serve the same purpose as a directory, by aggregating content. Unlike the file system

directory that can contain files and other directories only, the SOS compound can aggregate

any SOS entity, as long as it is addressable within the SOS namespace. An important

property of the SOS is that content having the same GUID is de-duplicated, irrespective

of the compound it is referred from. De-duplication, in theory, could be implemented

over standard file systems too, by using hard-links for every file that already exists on

the file system more than once. However, de-duplication can be counterproductive in

a file system, since two identical files contained in two different folders might have two

different semantic meanings to a user, and therefore might be updated and used differently.

The SOS can address this issue by abstracting compounds and atoms through assets and

having compounds of assets, rather than compounds of atoms and other compounds (see

Section 5.1.4.3[Versions with Compounds of Versions]). Managing compounds of assets,

however, can be computationally expensive and inefficient.
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7.3 Networked File Systems

Networked file systems can be categorised into: client-server file systems, clustered file

systems, and shared-nothing file systems. This section compares each type of these file

systems against the SOS in terms of abstractions and/or architecture.

7.3.1 Client-Server File Systems

Client-server file systems are designed to work over a limited number of servers and

clients. The most common CSFS are the Network File System (NFS) [97], the Andrew File

System (AFS) [98], and the Microsoft Server Message Block (SMB) [99, 100]. The SOS

storage model will be compared against these file systems, considering three characteristics:

the namespace, the service type, and the data access model (see Section 2.2.4.1).

Namespace

CSFS can have either global or per-client namespaces. AFS supports a global names-

pace, while NFS and SMB a per-client one. A per-client namespace is easier to manage and

implement at the client-side, but requires an additional global namespace abstraction layer

to avoid naming conflicts. The advantage of a global namespace is that it already provides

location transparency. Names in a global namespace are generated by the server or auto-

matically through the chosen naming scheme. The SOS also provides a global namespace,

which originates from the way content is addressed.

Service Type

A CSFS can provide either a stateless or a stateful service. File systems providing

stateful services, such as AFS and SMB, need to maintain the state of requests for a given

session, which can be expensive and a bottleneck when scaling the system. Having a

stateful service, however, can also reduce the number of requests made by the client. On

the other hand, a stateless service, such as NFS, scales better since no state needs to be

maintained across requests. The SOS provides a stateless service.
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Data Access Model

CSFS support two types of data access models: the remote access model and the

upload/download model. NFS and SMB provide a remote access model, while AFS the

upload/download model. The SOS also supports the upload/download model, which is

simpler and better suited for a large distributed storage system. A deficiency of the up-

load/download model is that it can be expensive when working with large files, since these

have to be downloaded/uploaded from/to the server on each session. In a remote access

model, on the other hand, the files never leave the server and constant communication

between the client and the server allows operations to be performed. The issue of the

upload/download model regarding large files is handled by the SOS model by chunking

data into relatively small atoms and grouping them together using the compound. Thus

only the necessary content is transferred over the network, which can also be performed in

parallel.

7.3.2 Clustered File Systems

A clustered file system, such as Lustre [106], OCFS2 [107], and GFS2 [108], is a net-

worked file system where multiple servers form a storage pool over a “shared-disk”. The

advantage of a CFS is that data written/read by the servers is consistent, however the

shared-disk is a single point of failure in the system. In addition, coordinating the data ac-

cess of multiple clients becomes expensive very quickly, as the number of clients increases.

The SOS design is based on a “shared-nothing” model (see below) and avoids these issues.

Data consistency in the SOS is achieved by implementing an immutable data storage, with

no updates.

7.3.3 Shared-Nothing File Systems

A shared-nothing file system (SNFS) is a networked file system built over a pool of

storage nodes with a “shared-nothing” model (i.e., each node has access to its own storage

disks). The Google File System (GFS) [111], Apache’s Hadoop File System (HDFS) [110],

and GlusterFS [137] are all example of SNFS. The SOS has an asymmetrical architecture
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(i.e., some nodes are more important or have different roles than others), like the first two,

while GlusterFS is a symmetrical SNFS. The advantage of an asymmetrical architecture

is that nodes can be specialised in performing particular tasks. Asymmetry, however, can

also be a disadvantage. For example, a node might be overloaded or become a point of

attack that can crash the entire system. Balancing and distributing system and network

resources is important to avoid such cases from happening.

The coordinator node, in the GFS and HDFS, is the key element that separates meta-

data from the actual storage of files and allows these systems to scale to thousands of

nodes and billions of files. The SOS, in a similar fashion, decouples storage from metadata

and node discovery management. The elastic hashing algorithm used by GlusterFS is an

alternative approach to distributed content without the need of a metadata node. This

approach, however, is not feasible for the SOS, where metadata is used to locate as well as

describe data. It should also be noted that the GFS and HDFS rely on a single coordina-

tor or multiple synchronised coordinators, while in the SOS nodes synchronise under the

eventual consistency paradigm. The side effect of this is that clients accessing the SOS at

the same time, may have different views of the content stored.

Another technique adopted by SNFS to manage large files is data chunking, which

enables content to be downloaded/uploaded in parallel and easily moved and replicated

across storage nodes. The SOS model also allows content to be chunked as well as de-

duplicated. In GFS, HDFS, and GlusterFS, data moves because requested by the clients

or because more storage nodes are added or fail, leading the system to create new replicas

of the lost files. In the SOS, similarly, data moves when requested by other nodes. Content

replication and erasure coding can be achieved in the SOS through the context model.

7.4 Versioning in Storage Systems

7.4.1 Backup Applications

Backup applications, or services, are solutions that store and manage data so that users

can recover previous versions of their data and/or recover lost content if the local storage
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fails. This section evaluates the versioning ability of such systems. Time Machine, as well

as other solutions (e.g., rsync104, tarsnap105, idrive106, and syncthing107), provides the

ability to set destination backup locations which are used to periodically store snapshots

of the data. If the locations are not available (e.g., the disk is not connected, the network

connection is down, etc.), then the the backup operation is skipped.

7.4.1.1 Data and Aggregation Metaphors

The main advantage of backup applications over the SOS is that their data model is

based on the same metaphors used by the file systems: files and directories. The SOS,

instead, uses a different set of metaphors which users are not familiar with, such as the

asset, compound, and the atom. However, as illustrated in the Reference Implementation

Chapter, Section 6.4, the SOS model can be mapped to the more familiar file and directory

metaphors, which are then presented to users and applications.

The next subsection evaluates how versioning is implemented in backup applications

and how it compares to versioning in the SOS.

7.4.1.2 Versioning

One property supported by most backup applications is to apply versioning over the

stored backups. Time Machine, for instance, stores backup snapshots, or versions, incre-

mentally, using hard-links to de-duplicate files that have not changed.

The main difference between the versioning model adopted by backup applications and

the one adopted by the SOS is that the former is based on the linear evolution of data, while

the latter allows data to evolve in multiple ways thus supporting operations like branching

and merging. Furthermore, the SOS files (via atoms) and directories (via compounds) can

be versioned independently. The simpler versioning model used by backup applications,

however, can also been seen as an advantage from the users’ perspective, since it requires

a gentle learning curve.

104rsync. https://rsync.samba.org/ [last accessed on 20/03/2018].
105Tarsnap - Online backups for the truly paranoid. https://tarsnap.com/ [last accessed on 22/04/2018].
106IDrive - Online Cloud Backups. https://idrive.com/ [last accessed on 22/04/2018].
107Syncthing. https://syncthing.net [last accessed on 16/03/2018].
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7.4.1.3 Data Backups via Replication

The SOS can provide the ability to backup data through the usage of contexts. For

instance, a context with an acceptAll predicate (see Section 5.1.7.2) can have a replication

policy that matches the behaviour of Time Machine, so that all data managed by a node is

replicated (or backed-up) to the user’s chosen destinations. In the SOS, data is replicated

across nodes; while in backup applications, such as Time Machine, data is stored across

storage disks, which are attached to a machine either locally or through the network. Time

Machine enables users to select what data to backup or not. The same functionality can

be achieved in the SOS by specifying ad-hoc rules within predicates. The SOS predicates

provide a richer syntax than backup applications, plus the SOS policies enable users to

backup different content in different ways.

7.4.2 Version Control Systems

The version metaphor used by the SOS is the same one used by VCS, such as git and

mercurial, where each version stores references to its previous ones (see Section 2.2.3 about

the different version metaphors). The main difference between VCS and the SOS, however,

is not in the version metaphor adopted but on the level of granularity of versioning. In

VCS, data is versioned in repositories, while in the SOS data is not linked to any repository

or a similar type of containment. Thus, VCS operations like pull and push change their

meaning when applied to the SOS model, since they should not be applied at the repository

level but rather at the asset level. Thus, assets are pulled, pushed, branched, and merged,

rather than entire repositories (see Section 5.1.4.3).

The architecture of the SOS is decentralised, similarly to decentralised VCS. In decen-

tralised VCS, the involved actors own the full copy of a repository, while in the SOS a node

might store only a partial set of all the modelled content. The advantage of this approach

is that a node does not have to hold a copy of the entire SOS and therefore it is possible

to manage larger quantities of data. On the other hand, no single node has a global, con-

sistent, view of the SOS world and resolving conflicts can be hard. Moreover, SOS users

are able to retrieve specific assets as long as the nodes storing them are reachable, while
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in decentralised VCS this problem is non-existent (assuming that a node has the latest

version of a repository).

The SOS model is based on the Merkle DAG data structure like git and mercurial. The

next two subsections compare the SOS against git and mercurial.

7.4.2.1 Git

Data Model

The git and SOS data models are very similar and share properties which are dis-

cussed below. Figure 7.1 compares graphically the two data models. First of all, both git

and the SOS represent entities using persistent manifest-like data structures. In git, the

manifests (i.e., blobs, trees, commits, and tags) are stored using an ad-hoc format (see

Section 3.3.3.3), while the SOS uses JSON, which is a more known and used format, but

less compact in nature.

Tree 

Blob

Commit

Tag

Compound

Atom’s Manifest

Version

Atom

Git SOS

Figure 7.1: Comparison between the git and SOS data models.

Data

Git models data through the blob, which constitutes the building block of its model.

Storing data in blobs, or blocks, is a common technique used in other storage systems
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too (see Chapter 3), which helps exploiting de-duplication, especially for large amounts

of data. The approach of the SOS for modelling data is to use an additional indirection

when addressing data (i.e., atoms) via the atom manifest. The SOS has been designed to

model data in a distributed environment, where users have only partial information about

the entire system or even about a given asset. The atom manifest allows users to own

a placeholder for the data, which also contains the information to retrieve the data (and

decrypt it, if the atom is encrypted). While having an additional abstraction for data can

be considered a disadvantage for some cases, this can be leveraged by using a distributed

hash table over atoms directly.

Aggregation

Aggregation, in git and the SOS, is achieved via the tree and compound entities, re-

spectively. The schemes adopted for the tree (git) and compound (SOS) entities differ

slightly, but both of them collect content together by reference. Moreover, both designs

allow content to be de-duplicated.

The main difference between the tree and the compound entities is that the former

aggregates blobs and trees only, while the latter can be used to aggregate any other entity

of the SOS. Moreover, the tree specifies the permission associated with each of its contents,

while the compound simply allows content to be labelled.

Versioning

Git and the SOS provide versioning through the commit and asset entities, respectively.

Both the commit and the asset allow content to be versioned over time, branched, and

merged. The main difference between the two approaches is that the multiple versions of

an asset are grouped together via the invariant GUID, while commits do not store any

information regarding the repository they belong to, thus making it hard to distribute

commits independently of their repository.

Metadata

In git metadata can be stored in two ways: via the commit or using notes. The SOS,

instead, provides an explicit metadata model, where metadata is decoupled from the data

196



7.4. Versioning in Storage Systems

it describes. Figure 7.2 compares graphically the metadata models for git and the SOS.

Metadata
M

et
ad

at
a 

M
od

el
s

VersionCommit

D
at

a 
M

od
el

s

Tree 

Blob

Commit

Note

Git SOS

Figure 7.2: Comparison between the git and SOS metadata models and how they relate to the
data models.

In git, the commit stores references (as email addresses usually) of its committer and

author, the timestamp of its creation, and an arbitrary message specified by the user.

Similarly, git notes can be used to associate additional information to a given commit.

Except for the information about the committer, the author, and the commit’s timestamp,

git does not provide any well-defined structure about how metadata should be stored.

The ability to write arbitrary commit messages and git notes results in a system where

metadata can be inconsistent, scattered, and hard to understand.

In the SOS, metadata is modelled via the metadata manifest and its mutability is mod-

elled through the asset, similarly to the asset’s content. The SOS allows typed metadata

properties (i.e., string, int, boolean, etc.). One type of metadata property is GUID, such

that it is possible to express metadata as reference values to other entities of the SOS, thus

enabling richer relationships between entities of the SOS to exist. For example, the author

or committer of a given version, in the SOS, could be expressed as a reference to a SOS

role. The same approach is not possible in git, where authors and committers are simply

text strings.
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Internal data structures

The types of internal data structures used to store the git and SOS data models are

strictly related to the actual implementations of the git tool and the SOS prototype. Git

is much more mature than the SOS, thus it uses internal data structures that are more

space efficient and optimised for IO operations. The git tool also provides a wider set of

features than the SOS and it requires a large set of internal data structures which are not

examined in this work.

Git stores the entities of its model in two ways: as objects and as packs. Objects

are commits, trees, blobs, and tags of the repository (see Figure 3.9) that are stored in

a compressed format. However, most of the git objects are smaller than the file system

blocks, meaning that most of the file system block space is wasted. As a workaround,

git uses packs, which are files collating together multiple objects. Packs are indexed to

provide faster object reading.

In the SOS, manifests and atoms are not compressed and no packing mechanism is

used, thus its space efficiency on disk is poorer than git. The lack of these optimisations

can have a significant impact on disk usage since a large portion of the SOS entities are

manifests, which are smaller than the file system blocks.

7.4.2.2 Mercurial

Data Model

This section compares the mercurial and SOS data models. The mercurial data model

is different to the one of the SOS, since the data, aggregation, and versioning metaphors

are not represented as manifest-like structures, but through the revlog data structure (see

Section 3.3.3.4). Figure 7.3 compares graphically the two data models.

Mercurial consists of three abstractions: the file, the manifest, and the changeset.

These abstractions will be written in italics, to avoid confusion with the more common file

abstraction used in file systems and the manifest data structure used by the SOS.

Data

Mercurial models data through the file metaphor. Unlike the file metaphor used by
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Figure 7.3: Comparison between the mercurial and SOS data models.

file systems, the mercurial one acts as a container for all the versions of a file. Its inter-

nal representation consists of a packed object containing multiple versions of the file as

explained in Section 3.3.3.4. The collection of all the versions of a file forms a DAG, with

each version referenced by a manifest. Furthermore, the mercurial file metaphor contains

a reference to the changeset it belongs to, thus enabling a better navigation of the model.

In the SOS no file abstraction exists, but one can be created through a combination of its

data model components. A direct advantage of the SOS is that it abstracts the location of

the atoms, such that data can be distributed across multiple nodes.

Aggregation

Mercurial models aggregation using the manifest entity. In the SOS, or git, the hierar-

chical structure of an asset, or a repository, is represented by nested compounds and trees.

In mercurial, on the other hand, the hierarchical structure of the stored data is represented

via the full pathname of a file, as stored in the manifest. In addition, the mercurial im-

plementation stores files using a folder structure that reflects the pathname of the files. A

disadvantage of the mercurial manifest is that it is not possible to exploit de-duplication

at the file or manifest level. This can have an important impact when managing large

non-textual data that is stored in multiple locations within the same mercurial repository.
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Mercurial stores the information about file names and their permissions within the

manifest, similarly to git’s trees.

Versioning

The mercurial versioning metaphor, the changeset, is similar to the one adopted by the

SOS, via the version manifest. Both metaphors describe a Merkle data structure, where the

versioning entity originates from previous versions (if any) and its id is generated from these

references plus the content of this version. The mercurial versioning approach, however, is

based on storing the deltas of each version, which are applied one after the other as needed

when a specific version is to be retrieved. The direct advantage of this mechanism is that

no duplicate data is stored, but applying multiple deltas can be expensive. Moreover,

no cross-file de-duplication exists. The SOS can store data efficiently by chunking it into

fixed-size atoms and grouping them in a data type compound.

Metadata

Mercurial allows metadata to be modelled via the commit only (i.e., a particular version

of the changeset). Similarly to git, the commit can store only limited structured metadata,

the timestamp and a reference to the committer, and unstructured information via the

commit message. The SOS model, on the other hand, de-couples metadata from the

content it describes and allows richer description of the content itself. The downside of

this approach is that retrieving data and metadata requires multiple requests to the SOS.

7.5 Cloud Storage

7.5.1 Infrastructure as a Service Storage

This section provides a comparison between the SOS and IaaS object storage services,

such as Amazon S3 [20], Backblaze B2 [125], and DigitalOcean Spaces [120].

7.5.1.1 Data and Metadata Model

The data and metadata models used by IaaS storage are more or less the same across

different solutions and consist of objects made of raw data and structured metadata, which
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is usually a list of attribute-value pairs. Objects are stored in buckets that are not part

of the model, but still play an important role in how objects are isolated and shared.

Figure 7.4 compares graphically the IaaS model against the SOS data-metadata model.

Compound

Atom’s Manifest

Version

Atom

SOSIaaS/Object

Bucket

Object

Data Metadata

Metadata

Figure 7.4: Comparison between the IaaS/Object storage and SOS data-metadata model.

IaaS storage provides a very simple data abstraction through the object, which encap-

sulates both the data and the associated metadata. The SOS, by comparison, provides a

more complex data abstraction, via the atom and the atom manifest. In the SOS, however,

atoms are not bound to specific nodes, while in IaaS storage, objects are bound to buckets.

The consequence of the bucket-driven design of IaaS storage is that the bucket becomes

the only source of truth, while in the SOS any node can store some given content. An

advantage of the bucket design, however, is the ability to provide isolation for the data

contained within a given bucket.

Most IaaS services also provide object versioning, modelled by assigning a version iden-

tifier to a particular version of an object. The most common IaaS storage solutions provide

linear versioning only, while the SOS asset model is more flexible and allows operations

such as branching and merging. The advantages of using a linear versioning model are

simplicity and better ease-of-use for the IaaS’ clients. The versioning model of the SOS is

more complex, but also more expressive and allows its users to work on the same assets at
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the same time, without the need to constantly synchronise them.

Metadata in IaaS storage is bound to data, while in the SOS it is de-coupled from data

and the asset. The advantage of the IaaS metadata model is that it is a simple design, easy

to understand, and content and metadata can be moved across buckets together. However,

services usually provide only limited functionalities over the metadata that can be stored

for a given object. For example, it is not possible to define the type of metadata attributes

and only a limited number of attributes can be set. A relevant difference between IaaS

storage and the SOS is that the latter allows metadata to be distributed independently of

the object it describes.

7.5.1.2 Access Control

IaaS storage solutions provide access control mechanisms similar to ACLs (access con-

trol lists). On Amazon AWS, for example, the IAM (Identity and Access Management)

service is used to enforce access control across multiple AWS services. For Amazon S3, it

is possible to control access both at the bucket and the object level. DigitalOcean’s Spaces

and Blackblaze B2 support a similar access control mechanism to Amazon S3.

The abstractions used by the SOS to enforce access control are the user and the role.

While these abstractions are similar, AWS is able to provide a wider set of functionalities

and enforce different levels of access for users. For example, on AWS it is possible to group

users together and define what operations a user is allowed to perform on a given service,

bucket, or object. Grouping together users or roles is not supported by the SOS. The

ability to associate specific operations with users/roles is also not supported.

7.5.1.3 Data Policies

The ability to define data policies is an important feature provided by some IaaS object

storage solutions because it allows users to establish how content should be stored, repli-

cated, and protected over time. The SOS can provide a similar abstraction via contexts.

Amazon S3 policies provide two main functions: data migration and data replication to

other Amazon S3 buckets or Amazon storage services (i.e., Amazon S3 Standard IA or

Amazon Glacier). Similarly, Google Cloud Storage uses policies to manage the life cycle
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of the stored content.

The SOS does not provide migration and replication policies by default, but it allows

users to specify such policies within the context model, such that the same behaviour is

obtained. The SOS policy model is more flexible and allows users to specify richer and

more diverse policies. On the other hand, IaaS are generally trusted services and their

policies are well-tested before being pushed into production. The same level of trust over

policies cannot be enforced in the SOS.

Furthermore, services like Amazon S3, Azure Storage, and Google Storage provide a

notification service, so that other services are notified when an event occurs on the storage

layer (i.e., when a stored object changes).

7.5.1.4 Architecture

The general architecture of IaaS storage services is principally based on the distribution

of storage machines across multiple locations around the globe. Locations are typically

grouped into regions, each consisting of multiple data centres. Moreover, some services

have started adding edge locations to bring storage closer to users.

The exact inner details of the commercial storage services are not known. IaaS storage

services, however, can be built on top of shared-nothing file systems like GFS, HDFS,

GlusterFS, or Ceph.

The SOS architecture is based on a fully decentralised network of nodes. IaaS storage

services can also implement a distributed architecture for better availability, redundancy,

and resiliency. However, a decentralised IaaS architecture is still subject to the vendor

lock-in issue. The SOS attempts to solve the vendor lock-in problem by providing generic

abstractions, which can be implemented by any storage provider. On the other hand,

enforcing control over data is easier in an IaaS architecture, since all its components are

known and under the same control.
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7.5.2 Software as a Service Storage

This section provides a comparison between the SOS and SaaS storage providers, such

as Dropbox [18], Google Drive [124], and OneDrive [19]

7.5.2.1 Data Model

SaaS storage providers, such as Dropbox, Google Drive, and OneDrive, use the file and

directory metaphors when presenting content to users. These metaphors are well-known

and easy to use, but they no longer represent the workflows and needs of today, as outlined

in [14].

Often SaaS storage providers are also associated with additional abstractions pro-

vided by application-centric systems, such as Android, iOS, or the Windows 8’s metro.

Application-centric abstractions facilitate data-usage, especially within the specific scope of

an application, by completely hiding their internal representations. However, application-

centric systems are still based on the common file/directory or object metaphors, so the

limitations of the latter still persist.

Cloud storage solutions, such as Dropbox, Google, and Adobe, have also designed new

abstractions that allow users to work with file’s placeholders, so that data does not have

to be necessarily stored by the user, unless this must be accessed. The Adobe DCX for-

mat [168] allows content to be bundled together using established semantics. The SOS

compound abstraction is comparable to DCX, but its semantics is simpler. Additionally,

Goldman [168] suggests that data modelled by DCX can be controlled using ad-hoc algo-

rithms to provide partial data synchronisation, parallel data uploads/downloads, or simply

to enable storage context-awareness. The Microsoft file biography abstraction [167] is an

attempt to extend the file in terms of the functionalities it provides in a distributed envi-

ronment, but it fails to describe how data is modelled and how the suggested interactions

should be implemented.

The SOS provides metaphors that are partially inspired by the ones provided by VCS,

which themselves are less known to most users. However, applications and services built

on top of the SOS can abstract these metaphors and present content to users via the more
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classic file and directory metaphors, as shown in Section 6.4.
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Figure 7.5: Comparison between the Dropbox and SOS data models.

Versioning

Most SaaS storage solutions also provide content versioning, which is presented to

users via the browser or ad-hoc applications due to the limitation of the current file system

abstraction. The underlying versioning models used by the most relevant SaaS solutions

are unknown and therefore they cannot be compared to the SOS versioning approach.

The Microsoft file biography proposes a versioning abstraction based on multiple snap-

shots of a file, which can be marked as edits, milestones, or actions such as the file being

sent over to someone, edits merged, or the file being deleted (or withdrawn) from a given

location. Some of these operations are directly comparable to the ones provided by VCS or

the SOS, such as committing, pushing, pulling, merging, branching. Deletion or withdrawn

operations, instead, are not comparable. Unfortunately, the authors [167] present the file

biography metaphor from an end-user perspective only, without providing a description of

a supporting model.
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Metadata

SaaS storage solutions usually store basic metadata regarding the names of the stored

files and their locations on different client machines. Some solutions allow users to specify

arbitrary metadata attributes, which can then be inspected through their web applications.

The file biography [167] and the DCX format [168] are two efforts by Microsoft and Adobe

respectively to extend the file metaphor, not only in terms of the functionalities they

provide, but also in terms of the metadata it can record. The SOS, however, takes an

alternative approach to model metadata, where this is de-coupled from the content it

describes. Similarly, the history of some data, which is modelled through the asset entity,

is also a type of metadata that is de-coupled from content. The advantage of de-coupling

metadata from content is that one may distribute one irrespectively of the other. This

allows the SOS to have distinct specialised nodes for managing metadata and data.

7.5.2.2 Architecture

The architecture of most relevant SaaS storage solutions is unknown, except for the

Dropbox one which has been partially presented through the official blog of the company

and studied over the years by researchers in the academia.

Dropbox stores data on data servers that are clearly separated from the ones managing

the metadata. This approach is similar to the GFS or the HDFS, where metadata and

data are stored and managed by two different types of nodes too. Dropbox avoids storing

the same content multiple times by de-duplicating content, but it applies this technique on

a per-user scope only, to avoid global de-duplication attacks [158]. The current design of

the SOS provides content de-duplication too, but it does not prevent global de-duplication

attacks.

The underlying storage system used by Dropbox — Magic Pocket — is designed specif-

ically to exploit de-duplication and improve IO performance when data is moved/copied

between replica machines. The reference implementation of the SOS presented in this work

does not use any particular optimisation technique to efficiently store data on disk.

Finally, Dropbox client’s LAN Sync feature can be used to exchange data directly
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between nodes residing in the same network. The SOS is based on a P2P architecture,

thus it can easily provide a similar functionality since nodes are distinguished for the

services and content they provide, rather than on the organisation they belong to.

7.5.3 Multi-Cloud Storage

The goal of multi-cloud storage is to abstract IaaS and SaaS storage solutions, so that

end-users should not be concerned about the services involved and where data is located.

The SOS provides data location abstraction that allows data to exist on any type of node,

as long as it belongs to the SOS network. SOS nodes can also be easily integrated with

existing storage services, as discussed in the Reference Implementation Chapter. Moreover,

while multi-cloud storage solutions strive to design a data model that fits existing cloud

storage services, the SOS introduces a new data model to which storage services should

adhere to. This can be a disadvantage, since services and applications need to map their

solutions to the SOS model, rather than the opposite.

7.6 P2P

In this section, the SOS is compared against the P2P storage system presented in

Section 3.5.2.

7.6.1 OceanStore and Pond

7.6.1.1 Data and Metadata Model

The SOS and OceanStore [195, 112] data models are two different implementations of

a Merkle DAG. Both models provide versioning, data location abstraction, and content

aggregation.

Both are content-addressable systems and allow content to be aggregated together.

OceanStore and the SOS support mutability by aggregating versioned content via a com-

mon, invariant, GUID (AGUID in OceanStore). The versioning property of the OceanStore

model, however, is stricter than the SOS one, since data is versioned only linearly, while the

SOS data model supports a more flexible model, where branching and merging operations
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are possible. The linear versioning model used by OceanStore is supported by the use of

a Byzantine agreement protocol implemented by the primary replica peers. In the SOS,

instead, assets can be updated concurrently by multiple users at the cost of sacrificing

Byzantine fault tolerance.

Both OceanStore and the SOS allow users to associate metadata with each version

of some content. In OceanStore metadata is embedded within the version object, while

in the SOS the metadata is de-coupled from the version. Embedding the metadata with

the version object results in a simpler model and the ability to easily distribute versions

and metadata together. The SOS approach, however, favours the distribution of metadata

independently of the data it describes. It is also possible to de-duplicate metadata across

multiple versions and/or assets, which is particularly useful when having large metadata.

7.6.1.2 Access Control

OceanStore enforces access control via the primary replica peers, which either distribute

the data to other nodes (read permission) or maintain an ACL (write permission). In

OceanStore, users and nodes are one and the same. In the SOS, on the other hand, users

are modelled independently of the nodes they use. Thus, users are able to interact with

the SOS independently of the node they use. The disadvantage of this approach is that

the SOS has to store and manage an additional model. This results in extra operations

when writing/reading protected (or signed) content. A separate user-role model, however,

abstracts protections and ownership from node locations and enables better control over

the content to be protected, in terms of granularity, ability to use different encryption

algorithms, and ease by which permissions are granted. The SOS, however, does not

implement access control mechanisms to differentiate between read and write permissions.

7.6.2 InterPlanetary File System

7.6.2.1 IPLD and the Multiformat Project

The basic building-block of IPFS [113] is its generic data model framework, IPLD [198],

which describes how entities are represented, and the multihash format [223], which defines
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how content is named and addressed. Similarly, the SOS is based on the manifest data

structure and the SOS GUID format.

Both IPLD and the SOS manifest structure allow content to be recorded and referenced.

IPLD’s Merkle-paths are equivalent to SOS paths. The current advantage of IPLD is that

data structures can be expressed in multiple formats (e.g., JSON, XML, YML), while the

SOS supports JSON manifests only. This encourages the adoption of the model across

multiple, and possibly existing, applications and services.

The multihash format used by IPLD and IPFS is very similar to the SOS GUID. Both

formats rely on their users knowing the association between hash functions and hash codes,

for the multihash, or hash string names, for the SOS. The multihash has been designed

to be compact, while the SOS GUID occupies more space, but it is easier to read and

parse, since it also describes the hash value base. The multihash format belongs to the

multiformat protocol and while it is not an established standard yet, it has recently gained

relevant traction from the open source community.

Multihash SOS GUID

Algorithm Unsigned integer (1 byte) String (variable length)

Length Integer n/a

Base n/a Integer (e.g., 16, 32, 64)

Value Expressed using the base that
matches the hash length

Expressed using the specified
base

Table 7.1: Comparison between Multihash and the SOS GUID formats.

7.6.2.2 Data Model

The IPFS data model, which is based on the git model, consists of four entities: the

block, the list, the tree, and the commit. The IPFS entities are directly comparable to the

SOS ones (see Figure 7.6). Both models are able to abstract data from locations, either

via the blob or the atom. The SOS atom manifest, however, can be used as a placeholder

metaphor at the cost of adding an additional level of indirection when retrieving the data.

The IPFS model does not enforce any size limits on the blob, but the IPFS tool shards

data into small (256KB maximum) blobs by default, which are grouped in a list, to exploit
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de-duplication. The SOS prototype does not provide any sharding functionality, but it

is theoretically possible to achieve the same result by using multiple atoms and grouping

them using a data type compound.

Both IPFS and the SOS allow aggregation by reference, via the list and tree for the

former and the compound for the latter. While the SOS compound stores content always

in order, by GUID, the IPFS provides two aggregation entities, the tree and the list, for

unordered and ordered content. In the original IPFS design, trees and lists could contain

blobs and other trees and lists, but not commits. This is a restriction of IPFS only, since

with the introduction of IPLD each entity can contain references to any other entity of the

model.

IPFS models versioning using commits, similarly to git. The SOS asset provides the

same versioning capabilities of the IPFS commit, but in addition it stores a GUID unique

to all its versions, the invariant, and it allows content to be associated with metadata.
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Figure 7.6: Comparison between the IPLD/IPFS and SOS data models.

Both IPFS and the SOS sign and protect content in-transit using the keys of a node.

The SOS, however, allows content to be signed and protected at-rest too, using the role

abstraction, which exists and can operate independently of a given node.
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7.6.3 Perkeep

7.6.3.1 Data Model

The Perkeep [190] data model is based on content-addressable entities, but the types

of entities, their relationships, and how they are used to define aggregation and versioning

are very different from the SOS or similar systems, such as IPFS and OceanStore.

Aggregation

Perkeep achieves aggregation using three types of entities: directory-claims, files, and

static-sets. The static-set is equivalent to the SOS compound of collection type, while the

file entity is comparable to a SOS compound of data type. The directory-claim is a third

type of aggregation, where it is its content that references the directory (i.e., the per-

manode associated to the directory-claim), rather than the opposite. The directory-claim

is comparable to a versioned compound that aggregates assets (see section 5.1.4.3[Ver-

sions with Compounds of Versions]). In the SOS approach, when a compound is updated,

the change has to be propagated to any compounds containing it, an operation that can

be computationally expensive. While in Perkeep, when the contents of a directory are

updated, the former will simply reference the permanode of the latter, which does not

change.

Versioning

Perkeep models versioning via claims and permanodes. The permanode acts as the

immutable reference for all the versions, similarly to the invariant GUID for the SOS asset.

However, while SOS versions are linked together forming a Merkle DAG, the Perkeep claims

are related to each other only by referencing the same permanode and are simply ordered

via timestamps. The Perkeep approach results in linear-versioning only. In addition, a

distributed system cannot safely enforce ordering only using timestamps, without using

any clock synchronisation mechanisms or logical clocks.
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7.6.3.2 Access Control and Protection

The current Perkeep model does not support any explicit access control mechanism.

Moreover, Perkeep supports data protection in-transit only.

Both Perkeep and the SOS define a user/role model to sign their entities. The main

difference between the two models is that Perkeep supports unnamed users only, while the

SOS defines named users, which are related to one or multiple roles. It is the role entity

that then is used to sign as well as to protect content.

7.6.4 Tahoe-LAFS

7.6.4.1 Data Model

Tahoe-LAFS [191] and the SOS both support content-addressable content, which can

be distributed over a network of nodes. In Tahoe-LAFS data is modelled around the stan-

dard file and directory metaphors, while the SOS extends the standard model to support

versioning too. Moreover, the Tahoe-LAFS data model is designed to provide high levels

of privacy and security, achieved by hashing content differently based on the access control

to grant. Moreover, encryption, file chunking, and erasure coding are used to improve the

level of data dispersion and resiliency. The use of a convergence secret, when generating

the capabilities of files, is used as a protection mechanism against global de-duplication

attacks.

The SOS employs content protection and access control through the user-role model, as

described in Section 5.1.6, but it is not able to distinguish read-only and read-write access

control like Tahoe-LAFS. Access to SOS-protected entities can be granted to multiple roles

while preserving the same GUID, unlike Tahoe-LAFS where the id — or capability — of

each file must be generated for every user. The disadvantage of the SOS approach is that

a successful breach on a shared protected entity compromises that entity for everyone else

who has access to it. Both systems do not provide a clear approach for revoking privileges

on protected content.

Both Tahoe-LAFS and the SOS protect content at-rest and in-transit. Tahoe-LAFS
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encrypts, chunks, and applies erasure coding by default, while in the SOS encryption is

optional as well as chunking and erasure coding. The reference implementation presented

in this thesis, however, could be upgraded to provide such features by default.

7.7 Context-Aware Storage

The objective of context-aware storage is to provide users richer ways of managing and

querying content. Over the last three decades many solutions have been proposed, from

the Semantic File System [206] and WinFS [76], to the more recent quFile [209], Adobe

DCX [168], and Microsoft file biography [167]. The SOS also enables context-aware storage

via the context model.

The design of context-aware storage is based on the description of computation that

allows content to be captured under some given semantics. Some systems also provide

computation in terms of what to do with the captured content, such as caching, replicat-

ing content, extracting metadata, etc. These traits are also present in the SOS design,

with the predicate and policy computational work units. In the SOS, computation is de-

coupled from the data model, while in some other systems, such as WinFS, GAIA [208],

or Lifestreams [207], this separation is not very clear. De-coupling computation from data

results in a system where computation is clear and can be distributed more easily. Systems

like WinFS and GAIA, however, provide richer context-aware storage properties than the

SOS. In GAIA, storage is built within a context-aware operating system, so that what data

is presented to users depends on contextual factors such as user, time, light, temperature,

number of people in a room, etc. In WinFS, the system is able to define strongly typed

relationships. In the SOS it is also possible to establish relationships between assets, but

the type of metadata is arbitrary. In Lifestreams, files are located along a time-axis, such

that users are able to navigate the file system along such axis. In the SOS it is possible

to achieve a similar behaviour, but the time location of assets would depend on when

predicates are run.

Finally, an important aspect of the SOS context model is that it has been designed

to work in a distributed environment, where predicates and policies are run over domains
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and codomains of nodes. Amazon S3 also allow users to define over which locations - at

the bucket level - policies can act upon.

The next two subsections compare in more detail the SOS with the Semantic File

System and the quFile. The next chapter discusses the SOS context model in more detail

as it has been evaluated experimentally.

7.7.1 The Semantic File System

7.7.1.1 Data Model

The SFS [206] data model is an extension of the classical file system one. Data is

presented to users via the file metaphor, while content aggregation is achieved using virtual

directories. Virtual directories, unlike normal directories, provide dynamic aggregation

of content. In the SOS, aggregation can be achieved via immutable compounds or via

contexts. The latter can be used to achieve the same behaviour of the SFS in terms of

automatically aggregating content.

7.7.1.2 Transducers and Contexts

The SFS and the SOS provide computation over content via transducers and con-

texts, respectively. Both systems have been designed to automatically classify content, but

present the following differences:

• Transducers can be run over files only, while contexts are run over assets, which are

richer abstractions that are version-aware and can also refer to other entities (e.g.,

atoms, metadata, roles).

• Transducers can only identify and aggregate files together, while the SOS can use

policies to allow content to flow across nodes, thus achieving operations such as data

migration or replication.

• The content identified by transducers is presented to users via virtual directories,

which can be combined under the AND boolean operator. SOS contexts cannot be

combined.
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• Transducers are event-triggered, while the contexts are run on a periodic basis. An

event-triggered system is conceptually simpler and easier to run, but in practice it

requires platform dependent code to be able to capture relevant events from the

operating system.

• Contexts are designed to be run over multiple nodes, having a source domain and

a sink codomain of nodes. Transducers can be run on the local file system or any

mounted network storage.

7.7.2 The quFile

The quFile [209] is a file metaphor designed primarily to aggregate multiple represen-

tations of a file and present users with one of them based on the context. The quFile

metaphor is very different to the SOS asset, which is a collection of immutable versions of

some data. The SOS can also support the aggregation of multiple representation of data

via the compound, but is not able to differentiate one representation from another, unless

using ad-hoc metadata. Moreover, each quFile is associated with a set of policies, which

can be used to make better decisions regarding what data to return or what permissions

users have on content. In the SOS, policies are defined for all the contents of a context,

rather than on a per-asset level.

Figure 7.7 compares graphically the quFile and SOS data models as well as their com-

putational models. First of all, the data model elements of the two systems are similar, in

terms of how data is aggregated, except that the SOS can achieve content and multiple-

representation aggregation using the compound only, while quFile storage uses the direc-

tory as well as the quFile metaphors. Moreover, the SOS allows content to be versioned

and abstracted from locations. The context model of the quFile is simpler than the one

proposed by the SOS. Understanding the former is simpler for end-users, since there are

less components involved and policies are directly related to quFiles. The SOS context

model, instead, is more modular, which can be an advantage in a distributed system where

content is replicated over multiple nodes. In a very large system, for example, having

de-duplicated predicates and policies can result in space and computing time-savings.
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Figure 7.7: Comparison between the quFile and SOS abstractions.

7.8 Conclusions

This chapter has evaluated comparatively the design and architecture of the Sea of Stuff

against the relevant data management systems (DMS) presented in the Background and

Literature Review Chapters. First of all, the SOS model and implementation were evaluated

against the requirements specified in Chapter 4. In the sections following, a qualitative

comparison provided insights on the similarities and differences between the SOS and

other systems. In particular, it has been shown that the SOS uses the same or similar

data management techniques applied by other systems, which have proven themselves to

be scalable and reliable over the years.

To summarise, the following remarks can be made regarding the SOS in relation to the

relevant related work:

• The file and directory are the two most well-known storage abstractions, but it has

become hard to understand what they are and how they behave when used in a
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distributed heterogeneous system. Many systems are trying to extend or re-think

these metaphors (e.g., file placeholder, Lifestreams, Microsoft file biography, etc.).

This thesis proposes a well-defined model: the SOS. The SOS model consists of a

variety of abstractions which allow data to be accessible irrespective of its locations,

aggregated, versioned, digitally signed, protected, and automatically managed across

nodes of the system. The SOS abstractions are analysed extensively in this chapter,

presenting advantages and disadvantages of its design.

• The SOS allows content to be accessible irrespective of its locations and the location

of users. Networked, cloud, and P2P storage can all provide such properties, but often

still rely on the standard file metaphor, which does not describe location abstraction.

The entities proposed by the SOS attempt to provide a metaphor that is alternative

to the file and accessible irrespective of its locations.

• Versioning has become a fundamental property of many modern DMS. The solution

provided by the SOS is similar to the one used by git, OceanStore, and IPFS. The

asset entity also allows data to be versioned independently of where content is stored

and other assets. In addition, the asset entity enables metadata to be linked to the

content it describes.

• Data access control can be hard to manage over distributed data. The SOS attempts

to control data access by modelling users as part of its model. Relevant information

needed to sign or protect content is bound to a user, rather than stored within an ACL

or a database. The current SOS user-role model has also limitations. For example,

the SOS is unable to distinguish between read-only and read-write capabilities for

data.

• The context model allows the SOS to provide context-aware storage. No standard

model for context-aware storage has been established yet. The SOS attempts to

provide a generic model which is technology agnostic and allows users to create rules

to classify and automatically manage content in a distributed setting. Unlike other
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context-aware DMS, such as the Semantic File System, the context model does not

have a well-defined and complete syntax for its rule-based components. Future work

should focus on improving these aspects of the model.

• The architecture design of the SOS has been driven by the different components of

its model. In the SOS there are six types of nodes (NMS, MDMS, URMS, MMS,

SMS, CMS), as presented in Chapter 5. This reduces the presence of bottlenecks in

the system and encourages the SOS to have nodes that are specialised on particular

aspects of its model. This design was inspired by the coordinator-datastore architec-

ture used by the GFS and HDFS, where the datastore simply stores and replicates

the data, while the coordinator handles the metadata and periodically checks that

the datastore nodes are functioning properly. However, with such architecture the

system might become unreliable and unresponsive in the case of extensive multiple

network partitions.

• The current SOS design, unlike the related DMS, is agnostic regarding the strategy

to use about where to store/retrieve data. Extensive research has been done on

P2P systems over the years. Future work on the SOS should explore the integration

of P2P research with its model and provide further evaluation against the relevant

DMS, such as OceanStore, IPFS, and Tahoe-LAFS.

A summary of the comparison presented in this chapter can be found in Appendix D

in tabular form.
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This chapter evaluates the Sea of Stuff reference implementation presented in Chap-

ter 6. In particular, the experiments are designed around the research hypothesis H2

presented in the Introduction Chapter. This chapter is organised as following: Section 8.1

lists the experiments presented in the remainder of the chapter; Section 8.2 outlines the

methodology used to define the experiments; Section 8.3 describes the testbed used for the

experiments; and Section 8.4 outlines the architecture of the experimental framework used

to run the experiments over multiple machines. The experiments and their results are

presented in Sections 8.5 and 8.6. Finally, Section 8.7 concludes the chapter.

8.1 Experiments Outline

This section outlines the experiments presented in this chapter. Two classes of ex-

periments have been run: (1) basic benchmarks experiments on the prototype and (2)

experiments aimed at understanding the performance and behaviour of contexts in a small

distributed environment. The following list summarises the experiments:

Reference Implementation Benchmarks

• Input/Output Benchmark – Section 8.5.1. The following benchmark tests the

reference implementation in terms of how well it performs when writing/reading

atoms and manifests within the local node. The results of this experiment define the

baseline performance of the reference implementation when data is read/written to

the local storage.
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• Network Latency and Throughput – Section 8.5.2. The latency and through-

put between any two nodes running on the experimental testbed are measured and

evaluated. The purpose of this experiment is to define the maximal throughput be-

tween any two nodes of the testbed, baseline needed to understand the results of other

experiments that involve multiple nodes interacting with one another.

• Atoms and Manifests Replication – Section 8.5.3. This benchmark evaluates

the performance of the SOS reference implementation when replicating atoms and

manifests across multiple nodes. The results of this benchmark define the baseline

performance for content replication, which is a primary element for the context ex-

periments.

Context Experiments

• The Nature of the Predicates – Section 8.6.1. These experiments explore the

relationship between the nature of the predicates and the time taken to identify

contents for a given context. These experiments show that the feasibility of using

contexts in the real-world depends on what predicates are being run.

• Predicates and the Domain – Section 8.6.2. These experiments demonstrate that

the number of nodes in the domain and the amount of data to process by the predicate

within the domain have an effect on the overall running time of the predicate. The

relationship between these factors is studied in these experiments.

• The Nature of the Policies – Section 8.6.3. These experiments study the rela-

tionship between the nature of policies and the time taken to enforce them. These

experiments show that the feasibility of using contexts in the real-world depends on

what policies are being run.

• Policies and the Codomain – Section 8.6.4. These experiments investigate the

relationship between the number of nodes in the codomain, the amount of data to

control through the policies, and the overall running time to enforce them.

220



8.2. Experimental Methodology

• Contexts under Failure – Section 8.6.5. These experiments demonstrate the effi-

cacy of contexts in recovering from node failures.

8.2 Experimental Methodology

The experimental methodology used to design, define, run, and evaluate each experi-

ment consists of the following steps:

1. The experiment is designed and described in terms of the following variables:

(a) Independent variables: these are the variables that are changed during the

experiment and will affect the dependent variables.

(b) Dependent variables: these are the variables that are being observed and

measured during the experiment.

(c) Controlled variables: these are the variables that are kept constant and un-

changed throughout the experiment, so that we can study only the effects of

independent variables being tested.

2. The experimental setup is adjusted for the specific experiment in terms of the number

of iterations to run, the nodes involved, and the dataset used.

3. The code defining the experiment is written in Java as described in Section 8.4.2.2.

4. The SOS node application, configuration files, and dataset are distributed and man-

aged through the experimental framework, as described in Section 8.4.

5. The experimental data from the nodes is collected and analysed using R108 as a

statistical tool. A confidence interval of 0.95 has been used when analysing the data.

8.3 Experimental Setup

The experiments presented in this chapter have been run on the Butts Wynd Cluster

(BWC), located at the University of St Andrews, UK. The BWC consists of 24 micro-

servers, divided between two Dell™ C5220 PowerEdge Rack Servers. The two racks, named

108R - The R Project for Statistical Computing. https://r-project.org/ [last accessed on 30/04/2018].

221

https://r-project.org/


Chapter 8. Experimental Evaluation

sif and hogun, have servers with dual quad-core Intel Xeon 3.4GHz CPUs, 16GB RAM,

two 500GB SATA disks, and two Gigabit Ethernet interfaces. Each server, or node, is

named using the following convention: 〈sif/hogun〉-〈1-12〉.

Each node has three main storage locations: cluster-home, cs-home and scratch-space.

The cluster-home storage is accessible under /cs/〈sif/hogun〉/username/ and it has a

capacity of 350GB. The cluster-home storage is shared across the nodes of the same rack.

The cs-home storage is accessible under /cs/home/username/ and is a shared storage space

between all nodes for the same user. Finally, the scratch-space storage is available under

/cs/scratch/username/, has a capacity of 500GB and it is local to each node (i.e., it is

not shared across nodes). The experiments run for this work use the unshared space.

The head nodes of the cluster, sif-1 and hogun-1, are configured so that their resources

are dedicated to manage the rest of the nodes in the rack. Due to the resources limitations

of the head nodes, only the following sets of nodes have been used for the experiments:

sif-〈2-12〉 and hogun-〈2-12〉.

The following is the relevant software specification used for each machine:

• Operating System: Scientific Linux 7.4 (Nitrogen), Kernel v.3.10.0

• Java SE Runtime Environment (JRE) 1.8 (build 1.8.0 161-b12). The following pa-

rameters were used for the JVM:

– Initial heap size: 8GB

– Maximum heap size: 12GB

– Used the garbage collector G1 [224], which is designed to perform better when

using multiprocessor machines with large amounts of memory

The BWC is a shared resource for staff and research students of the School of Computer

Science at the University of St Andrews. No user management policy is enforced on the

BWC. CPU, memory, network, and other users’ usage were monitored using collectd109,

109Collectd - The system statistics collection daemon. https://collectd.org/ [last access on
13/05/2018].
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which was already installed and configured in the cluster. Additional information about

the experimental setup can be found in Appendix B.

8.4 The Experimental Framework

8.4.1 Extension of the Sea of Stuff Node

The SOS node implementation, described in Chapter 6, contains a set of features for

recording the performance of particular functions and controlling the behaviour of a node:

• The node has been instrumented, as described in Section 6.1.9.

• The context management service allows for predicates and policies to be triggered

manually rather than through the scheduled thread pool.

• The REST interface has been extended so that some of the node’s APIs can be

disabled to simulate node failure. The REST APIs of a node can be re-enabled in a

similar fashion.

8.4.2 The Experimental Framework Utility

The experimental framework utility (EFU) is a tool developed to describe and manage

the experiments in a distributed setting, such as the BWC. The EFU consists of three

elements: the experiment itself, which is described in Java, the distribution of the applica-

tions and datasets over the testbed, and the management of the experiment from a remote

node, from start to data collection.

8.4.2.1 Experiment Distribution and Remote Management

When distributing and running an experiment, three types of nodes are involved: the

setup node, the coordinator node, and the slave node. The setup node is responsible for

(1) distributing the node application, the node configuration files, the experiment configu-

ration file, and the datasets; and (2) starting/stopping the nodes, removing files from the

nodes, and collecting the results of the experiments. The coordinator is the node that
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runs the experiment (see Section 8.4.2.2) and records the results through the node instru-

mentation. The slave is a node of the SOS network that takes part in the experiment,

but does not record any measurements. Failure of a slave node can be triggered by the

coordinator node. There can be zero, one, or more slave nodes for a given experiment.

The diagram in Figure 8.1 illustrates the interactions between the three types of nodes

involved in running an experiment. The diagram shows how the SOS node application is

distributed across the nodes in the cluster. The coordinator node, however, runs a different

application which contains the logic of the actual experiment (see Section 8.4.2.2). The

dataset is also transferred from the setup node to the coordinator and slave nodes. Finally,

the coordinator checks that the slave nodes are up and running before each iteration of the

experiment is started.

...

Cluster

Setup Node

SOS-slave.jar

slave.json

SOS-coordinator.jar

coordinator.json

dataset

Start Slaves

Start Coordinator

Check Nodes

Node is started
Node is started

Node is started

Run Experiment

Iterate

Coordinator Node Slave Node 1 Slave Node n

1

2

3

Figure 8.1: Diagram showing how the experiment framework (1) distributes the SOS node appli-
cation and the necessary configuration over the nodes used for the experiment; (2) starts the nodes;
and (3) starts the experiment on the experiment node.
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8.4.2.2 The Experimental Structure

Experiments are defined in Java and are executed in three phases:

• Setup, where the experiment configuration file is processed and the instrumentation

enabled. The experiment configuration contains information regarding the datasets

available for the experiment, what code to instrument, and the nodes involved in the

experiment.

• Running, when the experiment is run. The experiment is run over multiple itera-

tions. The coordinator node is restarted at each iteration.

• Finish, where the resources, used by the experiment, are cleaned up.

The datasets used for the experiments are described in the next section.

8.4.3 The Datasets

The experiments presented in this chapter are run against the following datasets:

• Random datasets. The contents of this dataset were randomly generated using

the synthetic dataset tool.110 Multiple random datasets were used:

– R 100KBx100 – This dataset consists of 100 files of 100KB in size each.

– R 1MBx1 – This dataset consists of a single file of 1MB in size.

– R 1MBx1000 – This dataset consists of 1000 files of 1MB in size each.

– R 10MBx1 – This dataset consists of a single file of 10MB in size.

– R 100MBx1 – This dataset consists of a single file of 100MB in size.

– R 0-1GBx1,50MB – This dataset consists of files with size ranging from 0

bytes to 1GB. There is one file for each size, which is always a multiple of

50MB.

110The synthetic dataset tool was developed as part of this work and it is available at https://github.

com/stacs-srg/synthetic_datasets [last access on 15/05/2018].
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– R 0-1GBx1,100MB – Same as R 0-1GBx1,50MB, but with files of size that

are multiple of 100MB.

• Text dataset T 1MBx1000. This datasets consists of 1000 files containing English

words. The files are generated using the synthetic dataset tool, such that the words

are chosen at random from a set of 400K+ words. This dataset is used in experiments

where there are context predicates that classify assets based on specific words. For

the purpose of these experiments, the two words the and bibliopole were placed in

the dataset with an arbitrary probability. The word the was placed as a common

word in the text, with a probability of p=1/15, while the word bibliopole was placed

as a rare word, with a probability of p=1/105. Each file is 1MB in size.

• Mixed content dataset. This dataset consists of 1000 files, of which 754 are text

files of 1MB each, for a total of 750MB, and 246 are JPEG images111, for a total of

270MB. The total size of the dataset is 1GB.

8.5 Reference Implementation Benchmarks

This section presents a first set of experiments aimed at testing and understanding

the performance and behaviour of the SOS node reference implementation in terms of

input/output (IO) and network performance.

8.5.1 Input/Output Benchmark

Writing and reading data are the two most basic operations of any storage systems. In

the SOS, IO operations are performed when writing and reading atoms, and manifests, to

and from the local storage. The results of the experiments reported in this section define

the baseline performance for the prototype presented in Chapter 6. The IO benchmark

presented in this section is necessary to understand the results of all other experiments

discussed in the remainder of the chapter.

111The images were retrieved from the INRIA Holidays dataset, available at http://lear.inrialpes.
fr/people/jegou/data.php [last access on 07/05/2018]. This dataset was chosen because of its variety of
content and open license. INRIA is the copyright holder of all the images included in the dataset.
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The first experiment consists of adding and retrieving atoms of varying size through the

storage management service (SMS) of the SOS node. The results are compared against the

write/read performance of the Java standard library java.io with the local file system. The

SMS writes and reads data through the castore library, which itself relies on the java.io

library. The time to compute the GUID of the atoms is also recorded, so that it is possible

to better understand its contribution when adding atoms to a node.

The experiment was run over one single node of the BWC and repeated 10 times. The

following variables were used:

• Independent variables: Amount of data read/written.

• Dependent variables: (1) Time to write the data; (2) time to read the written

data; (3) time to add the data as an atom; (4) time to calculate the hash when

adding the atom; and (5) time to read the added atom.

• Controlled variables: R 0-1GBx1,50MB dataset.

Figure 8.2 shows the IO performance of the SOS when writing/reading atoms. The

writing/reading performance of the java.io library is also shown (FS Write and FS Read).

The time to write/read data always increases in relation to the amount of data. However,

the increase is not always linear, as shown from the throughput graph (Figure 8.2[left]).

The SOS read atom operation is slower than the file system read one. This is due to the

SOS node performing atom look-up operations through the atom manifest before retrieving

it, while the file system reads the data directly from disk. However, as shown in the

Figure 8.2[right], the loss in performance is reasonably contained. The add atom operation,

on the other hand, is much slower than the file system write due to the hashing of the data

to generate the GUID of the atom. Thus, the hashing operation defines an upper bound

when persisting atoms. Different cryptographic hash functions are benchmarked in the

next subsection.

The throughput of the file system write operation drops considerably for files large than

750MB. Running the experiment multiple times has shown that this non-linear behaviour
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Figure 8.2: Experiment IO. (left) throughput in MB/s – the higher the better; (right) time to
perform read/write operations – the lower the better. A 95% confidence interval is shown in each
plot.

is correlated to the JVM maximum heap size and garbage collector strategy used.

8.5.1.1 GUID - Hash Function

The experiment presented in this section benchmarks the following cryptographic hash

functions: MD5, SHA-1, SHA-256, and SHA-512. The MD5 and SHA-1 hash functions

have been benchmarked because of their historical significance, but their usage in dis-

tributed systems is progressively decreasing. The current prototype of the SOS relies on

the Apache commons-code library112 for hashing data, so the following results reflect the

performance of this library.

The experiment was run over one single node of the BWC and repeated 10 times. The

following variables were used:

112Apache Commons Codec. https://commons.apache.org/proper/commons-codec/ [last accessed on
30/04/2018].
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• Independent variables: (1) Amount of data read/written and (2) the hash function

used: MD5, SHA-1, SHA-256, and SHA-512.

• Dependent variables: Time to hash the data.

• Controlled variables: R 0-1GBx1,100MB dataset.
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Figure 8.3: Hash algorithms performance. The diagram on the left shows the throughput in MB/s
– the higher the better, while on the right is shown the time to run the hash functions – the lower
the better. 95% confidence intervals have been calculated and are shown as very small bars, but
they hard to see due to the highly consistent performance of the hash functions.

The results outlined in Figure 8.3 show that for each hash function its throughput,

expressed in MB/s, is constant regardless of the amount of data processed. The MD5

and SHA-1 hash functions have the highest throughput, at an average of 156.30MB/s

(ci= ± 1.46) and 97.99MB/s (ci= ±0.92), respectively. The throughput of SHA-256 is

considerably lower, at 55.18MB/s (ci= ±0.52). Unexpectedly, the performance of SHA-512

is better than SHA-256 (77.84MB/s (ci= ±0.73)). This is because SHA-512 relies on 64-bit
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data structures, which make the hash function run faster on 64-bit processors. However,

SHA-256 was still chosen to be the default hash function in the reference implementation

because of its widely spread usage elsewhere.

8.5.2 Network Latency and Throughput

Another important aspect of a distributed storage system is its ability to communi-

cate and transfer data to/from other nodes efficiently. The majority of the experiments

presented in the remainder of this chapter involve multiple nodes interacting with one an-

other. This experiment benchmarks the throughput between two SOS nodes when run on

the BWC.

The experiment was run over two nodes of the BWC and repeated 10 times. Each

repetition involved transfers of data of 100MB in size (R 100MBx1 dataset). Table 8.1

shows that the throughput between two SOS nodes is about 50MB/s, for unsigned re-

quests, which is about 45% the maximum throughput between two nodes of the cluster.113

The lower throughput is mostly due to the fact that the SOS protocol is built on top of

HTTP. Relying on a well-established and tested protocol, such as HTTP, is an advantage,

but it affects also the network performance of the node significantly. No significant differ-

ence was found when performing the requests between nodes running on different racks.

The throughput for signed requests is about 17MB/s, which is about 14% the maximum

throughput between two nodes of the cluster. This decrease in throughput is due to the

request, and its body, having to be hashed when generating the digital signature (see Sec-

tion 2.1.8.4). Request signing is disabled for the experiments presented in the remainder

of this chapter.

SOS (MB/s) SOS - Signed (MB/s) TCP (MB/s) UDP (MB/s)

Same Rack 52.8 (ci= ±2.2) 16.5 (ci= ±0.5) 117.9 (ci= ±0.1) 119.6 (ci= ±0.1)

Different Racks 53.4 (ci= ±1.6) 16.8 (ci= ±0.7) 117.9 (ci= ±0.1) 119.6 (ci= ±0.1)

Table 8.1: Throughput between nodes of the Butts Wynd Cluster.

113The TCP and UDP throughput between nodes was measured using iperf (v. 2.0.10), a network perfor-
mance utility available at https://iperf.fr/ [last accessed on 18/05/2018].

230

https://iperf.fr/


8.5. Reference Implementation Benchmarks

8.5.3 Atoms and Manifests Replication

The SOS provides resiliency by performing data replication across multiple nodes. In

the reference implementation presented in this work, replication of content — atoms and

manifests — is not available by default. However, users can define contexts that capture

a particular set of the managed content within a node and replicate it over a codomain of

nodes. Prior to presenting the context related experiments (see Section 8.6), we investigate

the cost of replicating atoms and manifests and whether there is any benefit in performing

the replication process in parallel, when the replication factor is greater than one.

• Independent variables: The replication factor.

• Dependent variables: Time to replicate content such that the replication factor is

satisfied.

• Controlled variables: The R 1MBx1, R 10MBx1, R 100MBx1 datasets were used.

Versions manifests were used when replicating manifests.

The diagrams in Figure 8.4 show that the cost of replicating content increases linearly

with respect to the replication factor, as expected. However, replicating content over

multiple nodes in parallel can significantly decrease the overall replication time, such that

almost no increase in cost is observed as the replication factor increases. The bandwidth

consumption increases in relation to the level of parallelism. The results show that parallel

replication has a lower cost than linear replication, but only for replication factors greater

than 2 and 3. The overhead of creating and managing threads within a thread pool, in fact,

might be counterproductive when there are few replications to perform. The behaviour is

consistent whether the replicated content are atoms of different size or manifests (between

100 bytes and 1KB in size).

The experiments presented below use sequential atom/manifest replication. Upon read-

ing and evaluating these results, however, one should take into account the possibility of

replicating content in parallel and the advantages that can be gained from it.
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Figure 8.4: Replications of Manifests and Atoms of different sizes. Lower time values are better.

8.6 Context Experiments

The context model is the component of the SOS that allows users to define rules to

automatically manage content within a set of nodes, as described in Section 5.1.7. The

different elements of the context model (i.e., the predicate, domain, policies, and codomain)

are evaluated individually and in conjunction, with the aim to understand how each of them

affects the time to run a context and therefore the viability of using contexts in a small

distributed environment. Observations on how contexts react to nodes failures were also

made and reported.

The following experiments were run:

• The Nature of the Predicates – Section 8.6.1. This experiment demonstrates

how the nature of the predicate affects the time taken to identify contents for a

given context. The results show that predicates that operate on manifests only have
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a significant lower cost than predicates operating on atoms. Predicates, however,

can be optimised by filtering atoms to be inspected by looking at their associated

metadata first.

• Predicates and the Domain – Section 8.6.2. These experiments describe the

behaviour and performance of contexts that are run over a domain consisting of

more than one node. The experiments show that distributing the workload across

multiple nodes, of the domain, can improve the overall time to run the predicate for

small domains.

• The Nature of the Policies – Section 8.6.3. These experiments explore the nature

of the policies and how they affect the overall running time of the contexts to which

they belong.

• Policies and the Codomain – Section 8.6.4. These experiments show that the cost

of enforcing policies over a codomain depends on the number of nodes over which

the policy applies.

• Context under Failure – Section 8.6.5. These experiments illustrate the behaviour

of contexts when some of the nodes in the domain or codomain fail. In particular,

these experiments show that contexts can be used to automatically maintain content

in the SOS under failure.

8.6.1 The Nature of the Predicates

The predicate is a boolean-valued function that operates over SOS content (see Sec-

tion 5.1.7.2). The experiment presented in this section shows that the intrinsic nature of

the predicate and the type of content it inspects have a significant effect on its running

time. The first part of this experiment evaluates predicates that identify assets based on

their metadata and content, which are all of textual type. The second part of this ex-

periment attempts to simulate a more realistic scenario, where data is of multiple data

types and predicates classify content based on its extrinsic and intrinsic metadata (see

Section 2.1.3 for the different types of metadata).
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This experiment was run over a single node of the BWC and repeated 10 times. The

following variables were used:

• Independent Variables: The predicate functions, as listed below.

• Dependent Variables: The time to run the predicate for the entire dataset.

• Controlled Variables: The T 1MBx1000 dataset, which consists of text files only.

The predicates used for this experiment classify assets based on their content and

metadata related to them. The choice of the predicates was driven by the dataset used

and resulted in the following list:

• Base – Base Predicate. This predicate returns true irrespective of the content pro-

cessed.

• D CWOO – Data predicate, common word occurs once. This predicate returns true

if the word the is found in the atom.

• D UWOO – Data predicate, uncommon word occurs once. This predicate returns

true if the word bibliopole is found in the atom.

• D CWO10 – Data predicate, common word occurs at least 10 times. This predicate

returns true if the word the is found at least 10 times in the atom.

• MD CWOO – Metadata and data predicate, common word occurs once. This

predicate returns true if the atom is of text type and the word the is found in the

atom.

• MD UWOO – Metadata and data predicate, uncommon word occurs once. This

predicate returns true if the atom is of text type and the word bibliopole is found in

the atom.

• MD CWO10 – Metadata and data predicate, common word occurs at least 10

times. This predicate returns true if the atom is of text type and the word the is

found at least 10 times in the atom.
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• Metadata. This predicate returns true if the version’s content is associated with

metadata that has the Content-Type attribute equal to text.
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Figure 8.5: Time needed to run different types of predicates over 1000 text files of 1MB each.
Lower time values are better.

Figure 8.5 shows that the predicates operating on the atoms — D CWOO, D UWOO,

D CWO10, MD CWOO, MD UWOO, MD CWO10 — are the most expensive, due to

the predicate having to process a significant amount of bytes before being able to re-

turn. The predicates searching for the matching word only once — D CWOO, D CWO10,

MD CWOO and MD UWOO — return earlier, while the predicates D CWO10 and MD CWO10

are more expensive since they have to process the atoms until ten occurrences of the match-

ing word are found. Likewise, predicates searching for the uncommon word bibliopole are

more expensive than predicates searching for the more common word the. For this experi-

ment, all files of the dataset are of text type, thus processing metadata and atoms together

— MD CWOO, MD UWOO, and MD CWO10 — has no effect, since the metadata con-

235



Chapter 8. Experimental Evaluation

dition will always return true. On the other hand, the Metadata predicate has costs closer

to the Base predicate.

The conclusion that can be drawn from these results is that the feasibility of running a

predicate within a reasonable amount of time depends on (1) the type of computation run

and (2) the type of content being processed. This experiment, however, does not take into

account the possibility of running the predicate functions in parallel, which could improve

significantly the amount of time to process the entire dataset.
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Figure 8.6: Time needed to run different types of predicates over the mixed content dataset. Lower
time values are better.

In a real world scenario a dataset can contain more diverse data, in terms of data

size and type. For the following experimental instance, the Mixed Content dataset was

used (see Section 8.4.3). The experiment was run using the same settings of the previous

instance, but using two additional predicates:

236



8.6. Context Experiments

• D MB – Data predicate, mostly blue images. This predicate returns true if the

atom is a JPEG and is mostly blue (higher prevalence of blue colour among the RGB

values).

• MD MB – Metadata and data predicate, mostly blue images. This predicate returns

true if the version’s content is a JPEG image, based on the metadata, and is mostly

blue.

The results shown in Figure 8.6 demonstrate how running the predicate over data as

well as metadata can result in time savings. For the case of the predicates searching text

within the data, the overall running time of the predicates is 30% lower when the assets are

filtered based on their metadata. This improvement is due to the fact that the MD CWOO,

MD UWOO, and MD CWO10 predicates filter out about 30% of the dataset, which are

the images. A similar behaviour is observed for the D MB and MD MB predicates.

The conclusion that can be derived from this second run of the experiment is that the

cost of a predicate depends on whether it processes manifests, atoms, or a combination

of both. The cost of running a predicate over an atom is directly proportional to the

size of the atom, but it also depends on the actual computation run. Searching a word

in an atom is inherently cheaper than calculating the most prevalent RGB colour of an

image. Having predicates using machine learning algorithms to identify content, as hinted

in Section 5.1.7.2, allows users to express richer computation, but at a significantly higher

cost. Therefore, when writing predicates one should take into account the inherent nature

of the computation to be run and whether it is possible to filter out part of the content

based on its metadata.
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8.6.2 Predicates and the Domain

This section investigates the behaviour and performance of predicates that are run over

a domain consisting of one or more nodes. Three experiments were run in relation to:

• The node-cardinality of the domain - Section 8.6.2.1. This experiment studies the

relationship between the number of nodes in the domain and the cost of running a

context’s predicate over them.

• The data-cardinality of the domain – Section 8.6.2.2. This experiment studies the

relationship between the total number of assets in the domain and the cost of running

a context’s predicate over them.

• The total amount of data stored within the domain – Section 8.6.2.3. This exper-

iment studies the relationship between the total amount of data in the domain and

the cost of running a context’s predicate over it.
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Figure 8.7: Diagram showing the interaction between the nodes involved when evaluating a pred-
icate run over a domain of multiple nodes. This diagram is not shown in scale.
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The diagram in Figure 8.7 illustrates the steps performed at each iteration of the

experiments. First of all, the dataset is distributed evenly across the domain, prior to

starting the nodes. Then, the nodes are started and the context initially added on the

coordinator node is distributed to all the nodes of the context’s domain. Thereafter, the

experiment is started and the predicates on the slave nodes are manually triggered from

the coordinator nodes (in the non-experimental setup, predicates are scheduled to run

periodically). A node acknowledges the coordinator as soon as it finishes running the

predicate. The time between triggering the predicates and all the nodes returning back to

the coordinator is recorded. Finally, the experiment iteration terminates.

8.6.2.1 Variation over the Node-Cardinality of the Domain

This experiment investigates the behaviour of a context when its predicate is run over a

domain consisting of one or more nodes. The dataset used for the experiment is distributed

evenly across the domain, which can consist of one (coordinator node only) up to ten nodes.

The experiment was run over ten nodes of the BWC and repeated 10 times. The following

variables were used:

• Independent Variables: The number of nodes in the domain.

• Dependent Variables: The time to run the predicate for the entire dataset over

all the nodes in the domain.

• Controlled Variables: The D UWOO predicate and the T 1MBx1000 dataset.

The results shown in Figure 8.8 indicate that distributing the computation of the

predicate across multiple nodes decreases the overall running time to evaluate a context’s

predicate. The optimal solution was found for domains of three nodes. Running the

predicate over domains greater than three, however, still takes less time than running the

predicate in one single node, because the overall amount of data to be processed by one

node is less and run in parallel across the other nodes of the domain.
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Figure 8.8: Variation over the node-cardinality of the domain.

8.6.2.2 Variation over the Data-Cardinality of the Domain

This experiment investigates the behaviour of the context when the number of nodes

in the domain is fixed, but the number of assets to process changes. For this experiment,

domains of one, two, three, six, and ten nodes were chosen, while the predicate was run over

an increasing number of assets (distributed evenly across the domain). The experiment

was run over ten nodes of the BWC and repeated 10 times for each node-cardinality of the

domain and data point in the x-axis. The following variables were used:

• Independent Variables: The overall number of files spread across the domain.

• Dependent Variables: The time to run the predicate for the entire dataset over

all the nodes in the domain.

• Controlled Variables: The D UWOO predicate and the T 1MBx1000 dataset.
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Domains of one, two, three, six, and ten nodes were chosen.
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Figure 8.9: Variation over the data-cardinality of the domain. Lower time values are better.

The results in Figure 8.9 show that as the number of assets to process increases, so does

the time to run the predicate over all the content stored in the domain. This behaviour is

consistent, irrespective of the node-cardinality of the domain. These results also confirm

that the optimal number of nodes in a domain is three. This is due to the overhead of

having to distribute and coordinate the computation across multiple nodes. The overhead

might become negligible for certain types of predicates and amounts of data to process.

8.6.2.3 Variation over the Amount of Data Stored within the Domain

Finally, this experiment investigates how the time to run a predicate over the domain

is affected by the overall amount of data to process. The data to be processed by the

predicate was distributed evenly across the domain before the start of each experimental

iteration. This experiment was run over six nodes in the BWC and repeated 10 times for
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each dataset size. The following variables were used:

• Independent Variables: The amount of data to process, which ranged from 100MB

to 1GB, at intervals of 100MB.

• Dependent Variables: The time to run the predicate for the entire dataset over

the domain.

• Controlled Variables: The D UWOO predicate and the T 1MBx1000 dataset. A

domain of six nodes was chosen.

Figure 8.10 shows that the cost of running the predicate over the domain is directly

proportional to the amount of data to process, as expected.
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Figure 8.10: Time to run the predicate over a domain of nodes.
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8.6.3 The Nature of the Policies

This section studies the relationship between the nature of a policy and the time it

takes to enforce it. The following context policies were evaluated:

• Void Policy. The context has one policy, which does not do any computation. The

result for this policy defines the baseline for all the other policies.

• Grant Access. The context has one policy which considers atoms protected by one

role and extends the permissions to another role. The policy does not interact with

other nodes. Keys, in this particular instance, are encrypted using 2048-bit RSA

asymmetric keys.

• Atom Replication. The context has one policy which replicates the content of an

asset to another node of the codomain.

• Manifest Replication. The context has one policy which replicates the asset’s

version manifest to another node of the codomain. The version’s content is not

replicated.

For the purpose of this experiment, and the ones following, atoms and manifests are

replicated atomically, as explained in Section 2.1.6.1. Thus the space cost of replicating

an atom or manifest of size D by a replication factor n is D × n. Better space cost

factors can be achieved using different types of erasure coding techniques, as explained

in Section 2.1.6.2. The current SOS implementation, however, does not support erasure

coding yet, so it could not be tested in this experiment. Similarly, one may construct

policies that replicate content over nodes that respect specific criteria, for example based

on their geo-location, availability, or reliability.

This experiment was run over two nodes of the BWC and repeated 10 times for each

policy. The following variables were used:

• Independent Variables: The type of policy to enforce, as listed above
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• Dependent Variables: The time to enforce the policy apply procedure and the

policy satisfy function for the entire dataset.

• Controlled Variables: The R 1MBx1000 dataset was used.

0

30

60

90

120

Void Policy Grant Access Manifest Replication Atom Replication
Policies

T
im

e 
(s

) Function
Apply
Check

Time to run the policy functions over the R_1MBx1000 dataset

Figure 8.11: Costs of enforcing policies of different types. Lower time values are better.

The results shown in Figure 8.11 indicate that policy apply procedures can be signifi-

cantly more expensive than the policy check functions. The time to run the policy apply

procedures depends on two factors: (1) the amount of content over which it operates and

(2) the types of entities that are processed. For instance, policies that operate on atoms

tend to be more expensive than policies that operate on manifests only. Policies that op-

erate within the local node are also cheaper than policies that operate within a codomain

of nodes.
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8.6.4 Policies and the Codomain

This section evaluates the performance of policies when run over codomains consisting

of more than one node. For the experiments presented below, the time to enforce an atom

replication policy over a given codomain was measured. Two experiments were run. In the

first, the replication factor was kept constant, while the number of nodes in the codomain

ranged between one and ten (excluding the local node). In the second, the replication

factor was equal to the number of nodes in the codomain, which ranged between one and

ten nodes (excluding the local node).

The experiments were run over eleven nodes of the BWC and repeated 10 times for

each instance. The following variables were used:

• Independent Variables:

– First experiment: The number of nodes in the codomain increases.

– Second experiment: The number of nodes in the codomain increases. The repli-

cation factor also changes and is always equal to the number of nodes in the

codomain.

• Dependent Variables: The time to enforce the policy apply procedure and the

policy satisfy function.

• Controlled Variables:

– First experiment: The replication factor was set to 1. The R 1MBx1000 dataset

was used. The replication was performed sequentially (see replication experi-

ment in Section 8.5.3).

– Second experiment: The R 1MBx1000 dataset was used. The replication was

performed sequentially.

The results shown in Figure 8.12 show that the cost of enforcing a policy depends

primarily on the apply procedure and the number of nodes over which it must be applied.
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Figure 8.12: Experimental results showing the relationship between the number of nodes in a
codomain and the cost to enforce a policy over it. Lower time values are better.

When the replication factor is kept constant (see Figure 8.12[left]), the cost of enforcing

the policy also remains constant, irrespective of the number of nodes in the codomain.

When the replication factor increases (see Figure 8.12[right]), so does the cost to enforce

the policy, both for its apply procedure and check function.

The conclusion drawn from these results is that the viability of using contexts whose

policies enforce changes over a codomain of nodes depends on: (1) the actual rule enforced,

as shown in the previous experiment, and (2) on the number of nodes that the policy inter-

acts with. The cost of running a policy that interacts with multiple nodes can be improved

significantly by applying the changes in parallel, as previously shown in Section 8.5.3.
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8.6.5 Contexts under Failure

This section studies the behaviour of content replication contexts when nodes in the

codomain fail. For the purpose of this study the predicates and policies are invoked manu-

ally through the experimental framework, rather than periodically scheduled by the context

management service (CMS), as described in Section 5.1.7.5. Node failure is controlled by

disabling/enabling the REST API of the node. In the results presented, failure is repre-

sented in terms of the number of assets for which the policy is not satisfied.

Seven failure cases are studied in the remainder of this section. The dependent

variable measured in these experiments is the percentage of assets for which the context’s

policy is valid over time. The independent and controlled variables are different for

each experiment. Each experiment was repeated 5 times and run over multiple nodes of

the BWC. The results are plotted in line graphs, where each line has its own colour and

represents a run of the experiment. The results of all the runs are plotted separately,

rather than aggregated, because the purpose of these experiments is to demonstrate the

behaviour of contexts rather than studying their quantitative performance.

The experimental design and the observed behaviour are described for each case study.

Note that the workflow diagrams are not drawn in scale.

Workload

The workload of the experiments presented in this section consists of contexts that

replicate the content identified by their predicates. For the purpose of this experiment, a

predicate that returns true for all the assets of a node is used. The policy of the context

replicates the content of a given asset n-times, where n is the replication factor.

The R 100KBx100 dataset was used for these experiments. The purpose of these exper-

iments is not to measure how well the reference implementation manages large quantities

of data, but rather how contexts react to changes within the codomain.
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8.6.5.1 Case 1: The Node Failure

This experiment evaluates the ability of a context to detect the failure of a node in

its codomain. The context’s policy satisfied function detects the failure of the node when

verifying that the content replicated by the context’s policy is still available.

The experiment was run over two nodes of the BWC, where one node — the coordinator

— manages a context that replicates content to the slave node. The diagram in Figure 8.13a

shows the actions taking place during the experiment, while Figure 8.13b shows the number

of assets for which the policy is valid over time.

First, the policy satisfied function of the context is run and detects that no replicas exist

in the codomain. Then the policy apply function of the context is run and the coordinator

replicates the content of the dataset to the slave node. The percentage of valid assets,

however, remains zero — as reflected in the first few seconds shown in Figure 8.13b —

until the policy satisfied function is run again and reaches hundred percent (i.e., all assets

are replicated to the slave node). After a few seconds, the slave node fails and the replicas

it stored become unavailable. The coordinator detects that the replicas are unavailable

only when the policy satisfied function is run again, and the percentage of valid assets for

the policy decreases back to zero.
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(b) Experiment results.

Figure 8.13: Node failure: the replica node fails and the main node is unable to detect it any
more. The different colours used to indicate the multiple runs of the experiment in (b) are not
related to the colours used in (a).

8.6.5.2 Case 2: Partial Failure within the Codomain

This experiment evaluates the ability of a context to continue to operate when some but

not all the nodes in the codomain fail. The context’s policy satisfied function detects the

failure of the nodes by verifying whether the content is properly replicated on each node.

This experiment was run over three nodes of the BWC — one coordinator and two slave

nodes (see Figure 8.14a). Of the two slave nodes only one fails, so that the coordinator

node can re-establish the wanted state of the SOS by replicating the content to the other

slave node of the codomain that remains available.

The initial phase of the experiment is similar to the previous Case 1 (see above), but

the content is replicated to one of the two slave nodes. After a few seconds from the

replication, the slave node sif-2 fails. This failure means that some of the replicas are

unavailable and the number of valid assets drops (see Figure 8.14b). The next run of the

policy apply procedure re-establishes the desired state of the SOS, by replicating to node
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sif-3 the replicas that became unavailable when sif-2 failed.
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(b) Experiment results.

Figure 8.14: Partial failure within the codomain: the replica node fails, but other nodes are
available for replication.

This experiment shows that a context can have policies that replicate data within a
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desired set of nodes and an appropriate replication factor, while node failures are tolerated

as long as there are enough nodes to satisfy the policy.

8.6.5.3 Case 3: Failure of all the Nodes in the Codomain

This experiment evaluates the ability of a node to detect the failure of multiple nodes

within its codomain. The experiment was run over eleven nodes of the BWC — one

coordinator and ten slave nodes (see Figure 8.15a). This experiment is an extension of

Case 1 (see above), but there are ten replica nodes, which all fail at around the same

time during the experiment. The purpose of this experiment is to show that contexts are

able to detect failures of multiple nodes the same way as the failure of a single node was

detected in Case 1.

At the beginning of the experiment, the content associated with the context is replicated

within the codomain with a replication factor of 3. Thus, in this instance a value of 100%

of valid assets (see Figure 8.15b) means that the content of each asset is replicated to three

other nodes, for a total of 300 replicas across the codomain. After few seconds that the

coordinator node detects the successful replication of the assets, all the slave nodes fail

at about the same time. The failure is recorded by the coordinator as soon as the policy

satisfied function is run again.

251



Chapter 8. Experimental Evaluation

sif-12 C

S

0s

C

S

Coordinator Node

Slave Node

Node Started

Node Failed

Experiment Started Predicate

Policy - Apply

Policy - Satis�ed
Experiment Finished

30s

sif-2

Node Type
60s 90s

Ssif-3

Ssif-11

... S

(a) Experiment workflow.

0

25

50

75

100

0 50 10
0

15
0

Time (s)

P
er

ce
nt

ag
e 

of
 v

al
id

 a
ss

et
s

Percentage of valid assets over time for the context policy satisfied function

(b) Experiment results.

Figure 8.15: Failure of all the nodes in the codomain: all replica nodes fail.
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8.6.5.4 Case 4: Sequential Failure of all the Nodes in the Codomain

This experiment evaluates the ability of a node to detect the unavailability of replicas

as multiple nodes of the codomain fail at regular intervals. The experiment is a variation

of Case 3 (see above) and was run over eleven nodes of the BWC, with the slave nodes

failing one after the other at intervals of 15 seconds (see Figure 8.16a). The purpose of

this experiment is to show that contexts can detect the failure of multiple nodes over time

thank to the periodic scheduling of context policy satisfy function.

The first part of the experiment is the same as for Case 3, with the coordinator

replicating the content to the slave nodes and verifying that there are at least three replicas

for each asset. After a few seconds, the slave nodes start to fail at regular intervals of 15

seconds, until all nodes are down. As soon as one node is down, all the replicas that

it stored become unavailable and the number of valid assets for the policy decreases, as

shown in Figure 8.16b. The number of valid assets decreases gradually, since not all slave

nodes are down when the next policy satisfied function is run. The number of valid assets

becomes zero when at least eight slave nodes are down and there are not enough nodes to

hold 3 replicas, even for a single asset. The results also show how quickly the coordinator

can detect the failure of nodes, which depends on how often the policy satisfied function

is run. However, in a real world scenario, a node may manage hundreds of thousands or

even millions of assets as well as thousands of contexts, thus increasing the frequency by

which a context policy is run can be counterproductive.
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(b) Experiment results.

Figure 8.16: Sequential failure of all the nodes in the codomain: all replica nodes fail one after
the other, at 15-second intervals.
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8.6.5.5 Case 5: Temporary Failure of a Node

This experiment evaluates the ability of a node to detect the temporary unavailability

of replicas. The experiment is run over two nodes of the BWC, a coordinator that replicates

content using a context and a slave node that belongs to the context codomain and acts

as the storage for the replicas.
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(b) Experiment results.

Figure 8.17: Temporary failure of a node: the replica node fails for a short period of time and
then comes back alive again. This experiment was run 5 times, even though only two coloured lines
are visible.
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The workflow of this experiment is shown in Figure 8.17a. Similarly to Case 1, the co-

ordinator sif-12 replicates all the managed assets to the slave node sif-2 in its codomain.

Then the slave node fails, event detected by the coordinator when the context policy sat-

isfied function is run. However, unlike Case 1, in this experiment node sif-2 becomes

available after a few seconds, thus making the replicas it stored available again to the

coordinator. The coordinator detects this new change in the state of the codomain only

at the next run of the policy satisfied function (see Figure 8.17b). Unlike Case 2, where

the wanted state of the SOS was recovered by replicating the assets to another slave node

in the codomain, here the coordinator simply acknowledges that sif-2 already has the

replicated assets and the policy apply procedure does not need to perform any more work.

It should be noted that the coordinator can detect the temporary failure of a node if

and only if the context satisfied function is run within the window of failure. This can be

a positive side-effect of the system when having nodes that go down occasionally and for a

short amount of time. However, it also means that the system is not very reactive, unless

the satisfied function is run very often.

8.6.5.6 Case 6: Temporary Failure of all Nodes in the Codomain, which are

Restarted Sequentially

This experiment is based on Case 5 and tests the ability of a node to detect the

temporary unavailability of replicas over multiple nodes of the codomain.

The workflow of this experiment is shown in Figure 8.18a. The first part of the ex-

periment is exactly the same as for Case 3, but after a while all nodes fail, one of them

becomes available again. The other slave nodes become available too, one after the other

at intervals of 15 seconds each, until eventually all slave nodes are available. The context

used for this experiment replicates the 100 assets of the R 100KBx100 dataset across the

nodes in the codomain with a replication factor of 3. As soon as at least three nodes in the

codomain become available, the context validates the assets for which there are at least

three replicas, as shown in Figure 8.18b. The number of valid assets increases gradually, in

steps. It should also be noted that the step increases become larger as more nodes become
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available, as a sign that there are more nodes where the replicas are stored.
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(b) Experiment results.

Figure 8.18: Temporary failure of all nodes in the codomain, which are restarted sequentially: all
the replica nodes fail, but then come back alive again one after the other, at 15-second intervals.
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The conclusion drawn from this experiment is that a context can recover reasonably

quickly from the failure of multiple nodes in the codomain, especially thanks to the policy

satisfied function which helps avoiding unnecessary data replications. In this particular

case, the policy apply procedure was not run. Nonetheless, if the coordinator were to run

the apply procedure, the codomain could have ended up storing more assets replicas than

specified by the policy replication factor. This scenario is observed in Case 7 and can be

problematic when working with a large number of assets. As future work, one might devise

a mechanism to restrict the actions of policies within certain boundaries to overcome this

issue.

8.6.5.7 Case 7: Change in the Number of Nodes in the Codomain, while some

Fail.

This experiment tests the ability of a node to react to multiple changes in the codomain,

in particular as the number of nodes changes over time. The workflow of the experiment

is shown in Figure 8.19a.

The context used in the experiment has a codomain of four nodes — the slave nodes

plus the coordinator — and its policy replicates the assets from the R 100KBx100 dataset

with a replication factor of two (i.e., one copy stored locally and one remotely). To start

with, only one of the slave nodes is available, so all the replicas are stored in sif-2 at the

beginning. After a few seconds sif-2 becomes unavailable and the policy satisfied function

returns false for all the assets, as shown in Figure 8.19b. Soon after, both slave nodes sif-2

and sif-3 become available, however, since the former already has the replicas from before,

no active replication of the assets is involved. After a few more seconds, sif-2 fails again,

while a third slave node, sif-4, becomes available. As a result, the replicas are now stored

in both sif-3 and sif-4.

This experiment confirms that the model to manage policies used by the context model

works reasonably well when the state of the codomain changes. In scenarios such as the

one just presented, however, the context might replicate more content than needed.
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Figure 8.19: Change in the number of nodes in the codomain, while some fail: all or some of the
nodes in the codomain fail, while the number of the nodes in the codomain changes too.
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8.6.5.8 Summary of Contexts under Failure

This section has illustrated the behaviour of contexts and their policies when nodes

in the codomain fail. The behaviours observed outline the following properties regarding

contexts and their policies:

• Policy apply procedures can change the state of the SOS.

• Policy satisfy functions are generally not expensive to execute, as shown in Sec-

tion 8.6.3, and can be run multiple times to detect changes in the state of the SOS.

• Contexts that have codomains of multiple nodes are more resilient to failures, as

shown in Cases 2 and 7.

• In the face of partial faults in the codomain, contexts can run policy apply procedures

as a repair mechanism to re-establish the wanted state of the SOS. This has a cost

which was observed in the experiments in Sections 8.6.3 and 8.6.4.

These seven scenarios, and the results presented, should be considered as illustrative

examples of what contexts are capable of, rather than as a set of all the possible use

cases that contexts can handle. Contexts where domains consist of more than one node

should also be explored when considering failure. The current experimental framework,

however, does not allow multiple coordinators to be tracked and monitored. This and other

scenarios, which could derive from combinations of different types of predicates, policies,

domains, and codomains, are worth exploring as part of future work.

8.7 Conclusions

This chapter has presented two classes of experiments: one that benchmarks the basic

operations of the reference implementation and one that evaluates the performance and

behaviour of the different components of the SOS context model.

The results of the benchmarks show that the SOS reference implementation performs

reasonably well for reading data, but less so when writing it. The hashing calculations
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represent a bottleneck, which could be removed by pipelining the data hashing and writing

operations. Performing expensive operations in parallel, such as data replication, can also

improve the overall performance of a SOS node.

The results of the context related experiments demonstrate that the context model is a

feasible solution for managing content in a small distributed system. The experiments also

show the behaviour of multiple SOS nodes interacting through the context model. The

results presented should be used as guidelines for designing new contexts and as a starting

point for future designs and experiments regarding the context model.
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Data is at the centre of our digital life and managing it has become challenging, both

from the user and system perspective. This thesis provides a thorough overview of data

storage systems and the design of a model to manage shared mutable data in a distributed

environment. Three challenges, in particular, are addressed: (1) how to construct abstrac-

tions such that data is accessible irrespective of its location and versionable in a large

distributed system; (2) how to provide transparent and secure data management irrespec-

tive of locations, users, applications, and services; and (3) how to allow users to protect

and control content through well-defined rules in a distributed system.

This concluding chapter briefly summarises this work and outlines its main research

contributions. Then it discusses the limitations of the evaluation presented and presents

some directions for future work.

9.1 Thesis Summary

This thesis began with an Introduction Chapter, which outlines the problems and chal-

lenges in distributed storage systems and proposes two research hypotheses, which define

the scope of the work discussed in the chapters following.

Chapter 2 outlines the basic data management concepts relevant to this work and an

overview of data management systems (DMS). Chapter 3 continues by presenting the state

of the art DMS and how they address the challenges identified in the first chapter, with a

particular focus on distributed DMS. The requirements of a distributed DMS — based on

the Background and Literature Review Chapters and in relation to the hypotheses presented
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in the Introduction Chapter — are listed in Chapter 4, in terms of end-users, model, and

architecture requirements. These define the basis for the design of the Sea of Stuff, a model

to manage shared mutable data in a distributed environment, presented in Chapter 5.

The Sea of Stuff model and architecture is based on immutable, self-describing, re-

computable, and content-addressable entities represented by structured manifests. The Sea

of Stuff allows data to be managed and accessed irrespective of its location, aggregated

by reference and de-duplicated, and versioned. It also uses a user-role model to digitally

sign and protect data, metadata, and any other entity of its model. Automatic content

aggregation and control over multiple nodes is achieved via the context model. A reference

implementation of the Sea of Stuff has been built and described in Chapter 6.

Finally, Chapter 7 compares the SOS design and implementation qualitatively against

the relevant DMS presented in the literature review, while Chapter 8 evaluates some aspects

of the Sea of Stuff experimentally, with a particular focus on contexts and their behaviour

in a small distributed system. These evaluations suggest that the Sea of Stuff is a viable

DMS, but more development on the prototype and additional experiments need to be run

to conclusively affirm such a statement.

9.2 Review of Contributions

The main contributions of this thesis are a comprehensive literature review on data

management and the design and implementation of the Sea of Stuff, a model for shared

mutable data in a distributed system.

Chapters 2 and 3 provide an understanding of the basic properties of distributed storage

systems and an overview of such systems. The data abstractions, access control models,

security mechanisms, metadata management, and architecture are described and discussed

for each storage system taken into account.

The contribution provided by Chapter 5 is the design of the Sea of Stuff model and

architecture. The key aspects that distinguish the SOS design from other work are the

following:
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• Content is versionable, so that each version can be distributed independently of the

asset it belongs to.

• Metadata is extrinsic to the data it describes and it can be distributed and accessed

independently of where its associated content is.

• A multi-role model allows content to be digitally signed and/or protected at different

granularities.

• End-users can define a set of rules to identify and control content over a distributed

set of heterogeneous machines.

• The Sea of Stuff model is independent of the reference implementation presented

in this work and the underlying file system. Storage systems supporting the Sea of

Stuff model can interact consistently with each other while preserving data and its

associated metadata.

A prototype of the Sea of Stuff is described in Chapter 6 and made available at https:

//github.com/sea-of-stuff under the GPL-3.0 license.

The Sea of Stuff model and architecture designs are compared qualitatively in Chap-

ter 7. This evaluation shows how the Sea of Stuff compares to other related systems.

Chapter 8 evaluates the viability of the context model, as provided by the Sea of Stuff

prototype, within a small distributed environment.

9.3 Limitations of Evaluations

The evaluations presented in this thesis suggest that the Sea of Stuff can be a viable

distributed storage data model. However, there are also a number of elements that have

not been evaluated that limit the value and scope of these evaluations.

Chapter 7 compares the models and architectures of various storage systems against

the Sea of Stuff, but it does not provide an understanding of how these solutions perform

under similar circumstances. For example, it is not clear how the Sea of Stuff scales
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when managing millions, or even billions, of entities over hundreds of thousands of nodes

and how it would compare with other systems, like OceanStore and IPFS. Moreover, the

comparison for some of the systems is limited by the knowledge we have of closed source

systems.

Regarding the evaluation reported in Chapter 8, none of the experiments presented

has been run on a heterogeneous distributed environment that could resemble a real world

scenario. Thus, it is not possible to assert with confidence what the behaviour of the Sea of

Stuff is when used by real users. Similarly, all the experiments were run against synthetic

datasets, rather than data collections resembling the digital life of real end-users.

The evaluation of the Sea of Stuff context model explores only a few aspects of contexts

and their components. Firstly, the predicates and policies evaluated represent only a

very small subset of what they could be used for. Secondly, contexts have been tested

against domains and codomains of homogeneous nodes, unlike the heterogeneous real world.

Finally, while distributed systems can face a large variety of failures, only node failures

within the codomain were evaluated. A more extensive evaluation of the context model

needs to be performed to understand its viability in a real-world scenario.

9.4 Future Work

The evaluation chapters have demonstrated the viability of the Sea of Stuff and how

it satisfied the requirements outlined in Chapter 4. The Sea of Stuff model and its im-

plementation, however, are far from being good enough that they can be deployed in the

real-world. This section discusses possible future directions for the work presented in this

thesis and this research topic in general.

9.4.1 The Sea of Stuff Model and Architecture

• Additional research needs to be carried regarding the management of dynamic content

(i.e., content that changes frequently).

• In the current design, the asset entity is used to version atoms and compounds, but

it could potentially be used to version also other types of entities, such as roles.
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• The design proposed in this thesis does not define any particular strategy about where

to store content and where to retrieve it from. Future research should investigate the

use of DHT as well as reputation models based on nodes/users/roles.

• Metadata is an important element of the Sea of Stuff model, since it describes assets

and provides useful information for building contexts. The metadata entity could

be integrated with the compound, so that it would be possible to have better de-

duplication, useful when handling large amount of metadata. The metadata model

could also be integrated with the Resource Description Framework [89] to enable

richer relationships to be defined.

• The Sea of Stuff uses the context model to manage content in an automatic manner

within a distributed system. Further research on contexts should explore the design

of predicates that could return different types of values (e.g., integer/real numbers,

set of values, object values), other than boolean values only. Exploring better and

richer semantics for policies is also essential to understand the actual extent of what

policies can be used for and how policy conflicts can be resolved. Potential solutions

could involve the use of a domain-specific language to express and limit computation

and/or building a priority distributed data structure to determine what policy to

accept or reject for a particular asset. Finally, researchers could explore the ability

to combine contexts together under the AND/OR boolean operators to express richer

rules starting from pre-existing contexts.

9.4.2 Security

Security is a very important element of any distributed storage system. Further versions

of the SOS should provide at-rest and in-transit protection of atoms and manifests by

default. Researchers should also explore any potential security risks related to contexts

and what countermeasures can be taken.
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9.4.3 Sea of Stuff Integration with Existing Technology

The Sea of Stuff is a generic data model based on concepts and mechanisms used by

many other DMS. Exploring how the Sea of Stuff model can be integrated with existing

technology, from cloud to P2P storage solutions, is a valuable direction for future work.

Understanding the integration between the Sea of Stuff and already-existing blockchain

technology is also particularly relevant, as shown by the notable amount of interest the

community has on projects like SIA [225], StorJ [226] and Filecoin [227]. Moreover, in-

tegrating the fundamentals of smart contracts [228] with the Sea of Stuff context model

could open-up new possibilities in terms of what contexts are and how users interact with

them.

9.5 Concluding Remarks

In summary, this thesis gives an in-depth overview of data management solutions and

presents and evaluates the design of a distributed data model that provides: location ab-

straction, rich metadata management, data protection, versioning, autonomic data man-

agement, and resiliency.

The first part of this thesis contributes to a better understanding of the existing data

management solutions, how they compare, and what their advantages and disadvantages

are. It is then shown that a data model based on immutable, self-describing, re-computable,

and content-addressable entities can be used to build a distributed data management sys-

tem that allows data to be managed at scale, while providing the properties listed above.

With the Sea of Stuff, not only end-users are not bound to devices, services, and appli-

cations any longer, but they can also design and implement rules that allows data to be

organised and controlled in better and smarter ways.

The comparative and experimental evaluations presented in this work suggest that the

Sea of Stuff is a feasible model and architecture, but additional work, as suggested in this

chapter, is needed to conclusively affirm its viability in the real-world.

268



Bibliography

[1] Y. N. Harari, Sapiens: A Brief History of Humankind. Random House, 2014.

[2] N. Wirth, Algorithms + Data Structures = Programs. Prentice Hall PTR, 1978.

[3] P. J. Denning, D. E. Comer, D. Gries, M. C. Mulder, A. Tucker, A. J. Turner, and

P. R. Young, “Report of the ACM Task Force on the Core of Computer Science,”

Communications of the ACM, 1988.

[4] The Linux Information Project. Computer Science Definition. Last accessed on

14/04/2018. [Online]. Available: http://linfo.org/computerscience.html

[5] P. J. Denning, “Computing is a Natural Science,” Communications of the ACM,

vol. 50, no. 7, pp. 13–18, 2007.

[6] M. Tedre, The Science of Computing: Shaping a Discipline. CRC Press, 2014.

[7] J. Gantz and D. Reinsel, “The Digital Universe in 2020: Big Data, Bigger Digital

Shadows, and Biggest Growth in the Far East,” 2012.

[8] D. Reinsel, J. Gantz, and J. Rydning, “Data Age 2025: The Evolution of Data

to Life-Critical,” Technical Report, International Data Corporation, Last accessed

on 15/01/2018. [Online]. Available: https://seagate.com/files/www-content/our-

story/trends/files/Seagate-WP-DataAge2025-March-2017.pdf

[9] M. I. Seltzer and N. Murphy, “Hierarchical File Systems Are Dead,” Usenix HotOS,

2009.

269

http://linfo.org/computerscience.html
https://seagate.com/files/www-content/our-story/trends/files/Seagate-WP-DataAge2025-March-2017.pdf
https://seagate.com/files/www-content/our-story/trends/files/Seagate-WP-DataAge2025-March-2017.pdf


Bibliography

[10] J. W. O’Toole and D. K. Gifford, “Names should mean What, not Where,” Pro-

ceedings of the 5th workshop on ACM SIGOPS European workshop: Models and

paradigms for distributed systems structuring, pp. 1–5, 1992.

[11] S. Nickell, “A Cognitive Defense of Associative Interfaces for Object Reference,”

2006, Last accessed on 23/01/2018. [Online]. Available: http://gnome.org/∼seth/

storage/associative-interfaces.pdf

[12] J. Nielsen, “The Impending Demise of the File System,” IEEE Software, vol. 13,

no. 2, pp. 100–101, 1996.

[13] J. Gray, D. T. Liu, M. Nieto-Santisteban, A. Szalay, D. J. DeWitt, and G. Heber,

“Scientific Data Management in the Coming Decade,” ACM SIGMOD Record,

vol. 34, no. 4, pp. 34–41, 2005.

[14] R. Harper, S. Lindley, E. Thereska, R. Banks, P. Gosset, G. Smyth, W. Odom, and

E. Whitworth, “What is a File?” Proceedings of the 2013 conference on Computer

supported cooperative work, pp. 1125–1136, 2013.

[15] J. Martin, Managing the Data Base Environment. Prentice Hall PTR, 1983.

[16] F. Halasz and T. P. Moran, “Analogy Considered Harmful,” Proceedings of the 1982

Conference on Human Factors in Computing Systems, pp. 383–386, 1982.

[17] S. E. Lindley, C. C. Marshall, R. Banks, A. Sellen, and T. Regan, “Rethinking the

Web as a Personal Archive,” Proceedings of the 22nd International Conference on

World Wide Web, pp. 749–760, 2013.

[18] Dropbox, Inc. Dropbox. Last accessed on 20/10/2017. [Online]. Available:

https://dropbox.com

[19] Microsoft, Corp. Microsoft OneDrive. Last accessed on 20/10/2017. [Online].

Available: https://onedrive.live.com/

270

http://gnome.org/~seth/storage/associative-interfaces.pdf
http://gnome.org/~seth/storage/associative-interfaces.pdf
https://dropbox.com
https://onedrive.live.com/


Bibliography

[20] Amazon.com, Inc. Amazon Simple Storage Service. Last accessed on 20/10/2017.

[Online]. Available: https://aws.amazon.com/s3

[21] Rackspace, Inc. Rackspace - Scalable Cloud Object Storage. Last accessed on

20/10/2017. [Online]. Available: https://rackspace.com/cloud/files

[22] R. Buyya, J. Broberg, and A. M. Goscinski, Cloud Computing: Principles and

Paradigms. John Wiley & Sons, 2010, vol. 87.

[23] K. M. Khan and Q. Malluhi, “Establishing Trust in Cloud Computing,” IT profes-

sional, vol. 12, no. 5, pp. 20–27, 2010.

[24] B. H. Kim, W. Huang, and D. Lie, “Unity: Secure and Durable Personal Cloud

Storage,” Proceedings of the 2012 ACM Workshop on Cloud Computing Security

Workshop, pp. 31–36, 2012.

[25] P. Mahajan, S. Setty, S. Lee, A. Clement, L. Alvisi, M. Dahlin, and M. Walfish, “De-

pot: Cloud Storage with Minimal Trust,” ACM Transactions on Computer Systems,

vol. 29, no. 4, p. 12, 2011.

[26] D. Slamanig and C. Hanser, “On Cloud Storage and the Cloud of Clouds Approach,”

International Conference for Internet Technology And Secured Transactions, pp. 649–

655, 2012.

[27] J. Shen, J. Gu, Y. Zhou, and X. Wang, “Cloud-of-Clouds Storage Made Efficient:

A Pipeline-Based Approach,” IEEE International Conference on Web Services, pp.

724–727, 2016.

[28] H.-S. Yeo, X.-S. Phang, H.-J. Lee, and H. Lim, “Leveraging Client-Side Storage

Techniques for Enhanced use of Multiple Consumer Cloud Storage Services on

Resource-Constrained Mobile Devices,” Journal of Network and Computer Appli-

cations, vol. 43, pp. 142–156, 2014.

271

https://aws.amazon.com/s3
https://rackspace.com/cloud/files


Bibliography

[29] J. L. Gonzalez, J. C. Perez, V. J. Sosa-Sosa, L. M. Sanchez, and B. Bergua, “SkyCDS:

A Resilient Content Delivery Service based on Diversified Cloud Storage,” Simulation

Modelling Practice and Theory, vol. 54, pp. 64–85, 2015.

[30] B. Di Martino, D. Petcu, R. Cossu, P. Goncalves, T. Máhr, and M. Loichate, “Build-
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General Terms
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CRUD Create, Read, Update, Delete

CSFS Client-Server File System

DAG Directed Acyclic Graph

DES Data Encryption Standard

DFS Distributed File System

DMS Data Management System

DOI Digital Object Identifier

DSA Digital Signature Algorithm

EEM Explicit Extrinsic Metadata

EIM Explicit Intrinsic Metadata

FCB File-Control Block

GUID Globally Unique Identifier

IEM Implicit Extrinsic Metadata

IIM Implicit Intrinsic Metadata

MD5 Message Digest 5

HTTP Hypertext Transfer Protocol
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IP Internet Protocol

P2P Peer-to-Peer

JSON JavaScript Object Notation

IO or I/O Input/Output

RAM Random-access memory

OS Operating System

NAS Network-Attached Storage

NTP Network Time Protocol

SAN Storage-Area Network

IaaS Infrastructure as a Service

PaaS Platform as a Service

SaaS Software as a Service

MITM Man-in-the-Middle

SNFS Shared-Nothing File System

VFS Virtual File System

VCS Version Control System

SHA Secure Hash Algorithm

SPOF Single Point of Failure

RC4 Rivest Cipher 4

RSA Rivest-Shamir-Adleman

WebDAV Web Distributed Authoring and Versioning

URI Uniform Resource Identifier

URL Uniform Resource Locator
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Systems and Tools

AFS Andrew File System

Amazon S3 Amazon Simple Storage Service

CIFS Common Internet File System

DBFS Oracle Database File System

FUSE Filesystem in Userspace

GFS Google File System

IFS Installable File System

IPFS InterPlanetary File System

NFS Network File System

OCFS2 Oracle Cluster File System

Windows NTFS Windows New Technology File System

Windows FAT Windows File Allocation Table

SFS Semantic File System

SMB Server Message Block

Abbreviations Regarding the Model Introduced in this Thesis

CMS Context Management Service

NMS Node Management Service

MDMS Manifests and Data Management Service

MMS Metadata Management Service

SMS Storage Management Service

SOS Sea Of Stuff

URMS User and Role Management Service

Abbreviations Used in the Experimental Chapters

BWC Butts Wynd Cluster

EFU Experimental Framework Utility
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Abbreviations regarding the datasets used for the experiments performed to evaluate

this work are introduced in the appropriate sections of Chapter 8.
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Glossary of Terms

The following is a short glossary of terms that will be used throughout this thesis.

• Abstraction: the generic essence of a concept. In this thesis the word abstraction is

used to indicate the generic concepts to model data, such as the file or the directory.

The word abstraction is used interchangeably with the term metaphor.

• Cardinality of a set: the number of entities that make the set.

• Content-addressable: a system where data is associated with names that are re-

lated to its actual sequence of bytes, such that a different sequence of bytes must be

bound to another name.

• Immutable: unchanging over time. An object or entity that is immutable cannot

change its state once it is created.

• Node: a point of access to a network. A node must be uniquely identifiable within

the network (e.g., via IP address).

• Metaphor: used interchangeably with the term abstraction.

• Provenance: the history of an entity. The provenance of an entity consists of

metadata about its creation and how it has changed over time, by whom, where,

why, under what condition, and so on.

• Re-computable: having the capability to be computed again given some data.

• Self-describing: containing all the information necessary to characterise itself such

that it does not need any further external data to be used in the system.
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• Self-contained: see self-describing.

• Size of a set: the sum of the size (e.g., in bytes) of all entities in the set.

• Transparency: transparency is an ambiguous word, since it can have two meanings:

(1) there is transparency in some aspect of a distributed system when this is hidden

from the user or (2) there is transparency is when an aspect of the system is visible.

For the purpose of this thesis, the definition in (1) will be used.
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Settings

A.1 SOS Node Settings

The following is an example of a setting file for a SOS node. The format is in JSON.

{

"settings": {

"guid": "SHA256_16_9999a025d7d3b2cf782da0ef24423181fdd4096091bd8cc18b18c3aab9cb00bb",

"services": {

"sms": {

"exposed": true,

"canPersist": true,

"maxReplication": 3

},

"cms": {

"exposed": false,

"indexFile": "cms.index",

"loadedPath": "~/sos/java/contexts/",

"automatic": true,

"predicateThread": {

"initialDelay": 30,

"period": 60

},

"policiesThread": {

"initialDelay": 45,

"period": 60

},

"checkPoliciesThread": {

"initialDelay": 45,

"period": 60
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},

"getdataThread": {

"initialDelay": 60,

"period": 60

},

"spawnThread": {

"initialDelay": 90,

"period": 120

}

},

"mdms": {

"exposed": false,

"maxReplication": 3,

"cacheFile": "manifests.cache",

"indexFile": "dds.index"

},

"urms": {

"exposed": false,

"cacheFile": "usro.cache"

},

"nms": {

"exposed": false,

"startupRegistration" : true,

"bootstrap" : true,

"ping": true

},

"mms": {

"exposed": false

}

},

"database": {

"filename": "node.db"

},

"rest": {

"port": 8080

},

"webDAV": {

"port": 8081

},

"webAPP": {
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"port": 8082

},

"keys": {

"location": "~/sos/keys"

},

"store": {

"type": "local",

"location": "~/sos/"

},

"global": {

"ssl_trust_store" : "PATH TO THE JAVA SECURITY CACERTS",

"tasks": {

"thread": {

"ps": 4

}

},

"cacheFlusher": {

"enabled" : false,

"maxSize": 1048576,

"thread": {

"ps": 1,

"initialDelay": 0,

"period": 600

}

}

},

"bootstrapNodes": [

{

"guid" : "SHA256_16_bb077f9420219e99bf776a7a116334405a81d2627bd4f87288259607f05d1615",

"hostname" : "138.251.207.87",

"port" : 8080,

"certificate" : "MFwwDQYJKoZIhvcNAQEBBQADSwAwSAJBAKZOnoFAxsx4BiXBKzeJISOv5q5XTSpPZRCmYGg+

59VctY1xeYS7NEkEmbk/Sa8y5chrZttN5CggdBJBIFGgMU0CAwEAAQ=="

}

]

}

}

Code A.1: Example of SOS node setting file.
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Experiment Settings

B.1 Butts Wynd Cluster

The following is the specification for the OS used by the nodes of the Butts Wynd

Cluster (relative to the time when the experiments were run).

1 # Kernel Version

2 $ uname -r

3 Linux 3.10.0-693.11.6.el7.x86_64

4

5 # Linux Distribution

6 $ cat /etc/*-release

7 NAME="Scientific Linux"

8 VERSION="7.4 (Nitrogen)"

9 ID="rhel"

10 ID_LIKE="scientific centos fedora"

11 VERSION_ID="7.4"

12 PRETTY_NAME="Scientific Linux 7.4 (Nitrogen)"

13 ANSI_COLOR="0;31"

14 CPE_NAME="cpe:/o:scientificlinux:scientificlinux:7.4:GA"

15 HOME_URL="http://www.scientificlinux.org//"

16 BUG_REPORT_URL="mailto:scientific-linux-devel@listserv.fnal.gov"

17

18 REDHAT_BUGZILLA_PRODUCT="Scientific Linux 7"

19 REDHAT_BUGZILLA_PRODUCT_VERSION=7.4

20 REDHAT_SUPPORT_PRODUCT="Scientific Linux"

21 REDHAT_SUPPORT_PRODUCT_VERSION="7.4"

22 Scientific Linux release 7.4 (Nitrogen)

23 Scientific Linux release 7.4 (Nitrogen)

24 Scientific Linux release 7.4 (Nitrogen)
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Code B.1: Kernel Version and Operating System Version.

B.2 Experiment Configuration

An experiment is defined by a Java class, which matches the experiment phases de-

scribed in Section 8.4, and an experiment configuration file. The experiment configuration

file contains information about the experiment itself and the nodes where to distribute it.

The following is an example of such file.

1 {

2 "experiment" : {

3 "name" : "experiment pr",

4 "experimentClass": "Experiment_PR", // Must match the actual Java file for the expriment

5 "description" : "PR experiment - on hogun-2.",

6 "setup" : {

7 "app" : "sos-slave/target/sos.jar",

8 "iterations" : 10

9 },

10 "slave_nodes" : [ ],

11 "coordinator_node" : {

12 "id" : 0,

13 "name" : "hogun-2",

14 "path" : "/cs/scratch/", // Remote path

15 "remote" : true,

16 "java" : "/usr/local/jdk/bin/java", // Remote path

17 "ssh" : {

18 "type" : 1,

19 "host" : "hogun-2.cluster",

20 "user" : "sic2",

21 "known_hosts": "/Users/sic2/.ssh/known_hosts",

22 "config": "/Users/sic2/.ssh/config",

23 "privatekeypath": "/Users/sic2/.ssh/id_rsa",

24 "passphrase" : "ENCRYPTED_PASSPHRASE"

25 },

26 "configurationfile" : "NODE_CONFIGURATION_FILE",

27 "dataset" : "NAME_OF_DATASET",

28 },
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29 "stats": { // Toggles to enable/disable instrumentation of the SOS node

30 "experiment": true,

31 "predicate": true,

32 "predicate_remote": false,

33 "policies": false,

34 "checkPolicies": false,

35 "checkPolicies": false,

36 "io": false,

37 "guid_data": false,

38 "guid_manifest": false,

39 "ping": false

40 }

41 }

42 }

Code B.2: Kernel Version and Operating System Version.
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Libraries used by the SOS proto-

type

This appendix section presents the most relevant libraries used by the SOS prototype.

Some of these libraries have been developed as part of this thesis, while others have been

implemented by third parties.

The SOS prototype does not use any proprietary library/code.

C.1 Castore

Castore (cast + store) is a very minimal and simple library that provides abstraction

over different storage systems. Castore, currently, provides a storage abstraction over the

following implementations: local file system, AWS S3, Redis, Dropbox, and Google Drive.

The castore library is inspired by the asa/filesystem project developed at the Uni-

versity of St Andrews [229].114

A SOS node can be configured to use different underlying storage architectures, since

all the in-node data interactions are done through the castore library.

The library is available at https://github.com/sea-of-stuff/castore (MIT).

C.2 guid-sta

This is a simple library to generate GUIDs using the format described in Section 5.1.1.

This library is available at https://github.com/stacs-srg/guid-sta (MIT).

114Github - stacs-srg/asa. https://github.com/stacs-srg/asa [Last accessed on 15/05/2018].
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Appendix C. Libraries used by the SOS prototype

C.3 St Andrews Utilities

This is an effort of the University of St Andrews system research group to collect

common utility algorithms written in java written over the years and across multiple

projects. This library is available at https://github.com/stacs-srg/utilities (GPL-

3.0).

C.4 Apache Tika

The Apache Tika™dependency is used to automatically analyse atoms and generate

metadata for the SOS. This library was chosen because of its ease of usage and very wide

data type support. The Apache Tika™library is available at https://tika.apache.org/.

C.5 Unirest

Unirest is a lightweight HTTP library that allows the writing of HTTP requests in

a simple manner. The SOS prototype relies on Unirest for the communication between

nodes. Unirest is available at http://unirest.io/ (MIT).

C.6 WebDAV-server

This is a java-based WebDAV server prototype that has been used by several research

projects to expose different types of storage implementations. The WebDAV-server project

is available at: https://github.com/stacs-srg/WebDAV-server.

C.7 fs-sta

The fs-sta project consists of a collection of generic file system abstractions that have

been shared across multiple research projects. The SOS implements these abstractions

to support the WebDAV file system. The fs-sta abstractions are available at: https:

//github.com/stacs-srg/fs-sta.
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Systems Comparison

The tables in the next two pages provide a summary of the comparisons presented in

Chapter 7 in a tabular form.

Information that was not available or not applicable has been marked as “N/A”.
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Local File Systems

SOS (ext2-3-4, HFS, FAT, 
etc)

AFS NFS SMB/CIFS Google File 
System

Hadoop Apple Time 
Machine

git mercurial

Data 
representation

Atom File File File File File File File Blob File

Data 
Aggregation Compound Directory Directory Directory Directory None None Directory Tree Manifest

Location 
Abstraction

Unstructured P2P 
(but can support 
DHT)

No Yes Yes Yes Yes Yes N/A nodes specified in 
configuration

nodes specified in 
configuration

Data Type Immutable Mutable Mutable Mutable Mutable Append-
only

Append-
only

Mutable
Immutable + 
staging phase 
(mutable)

Immutable + staging 
phase (mutable)

De-duplication Yes No No No No Yes Yes Yes, but not 
across all files

Yes No (based on deltas)

Entities Internal 
Identifiers

GUID (SHA256 by 
default) Human readable name

Human readable 
name

Human readable 
name

Human readable 
name

Human 
readable 
name + 
Hash

Human 
readable 
name + 
Hash

Human readable 
name

SHA-1 (migrating to 
SHA-256)

Numbers (local to repo) 
and SHA-1 (for revlog, < 
0.9v) and SHA-256 (for 
revlogNG, >= 0.9)

Data Integrity Yes Depends on the 
implementation

No Yes Yes Yes Yes Yes Yes Yes

Erasure Coding Via Contexts No No No No Yes Yes No No No

Data replication Via Contexts N/A Yes Yes Yes Yes Yes No Manually Manually

Metadata 
Support

Yes, external 
metadata model

Yes, via attributes, 
extended attributes, and 
tagging

Yes, via attributes Yes, via attributes Yes, via attributes N/A N/A Yes, via attributes Yes, via commits 
and notes

Yes, via commits

Versioning 
Support Yes No No No No No No Yes Yes Yes

Network 
Protocol HTTP No TCP UDP and TCP SMB N/A N/A AFP, SMB

git (w/wo ssh), 
HTTP, HTTPS, rsync, 
email, bundles

Custom protocol, HTTP, 
email

User model User-Role model User, group, other 
model, ACL, Capabilities

User, group, other 
model, ACL, 
Capabilities

User, group, other 
model, ACL, 
Capabilities

User, group, other 
model, ACL

Yes Yes No Yes 
(committer/author)

Yes (commiter)

Data Protection Yes Depends In-transit In-transit In-transit Yes Yes No No No
Automatic File 
Classification

Via Contexts No No No No No No No No No

Smart folders Via Contexts No No No No No No No No No

Automatic File 
Management Via Contexts No No No No Yes Yes No No No

Versioning Storage SystemsNetworked File Systems



SaaS Storage IaaS Storage

SOS OceanStore/Pond IPFS Perkeep Tahoe-LAFS Dropbox Amazon S3 Semantic 
FS

quFiles
Microsoft 

File 
Biography

Creative Cloud

Data 
representation

Atom Object (active and 
archival)

Block File and bytes 
(collection of blobs)

File File Object File quFile File 
Biography

File, DCX

Data 
Aggregation Compound

Supported, object known 
simply as directory List and Tree Directory Directory Directory None

Virtual 
Directory Directory Directory Directory

Location 
Abstraction

Unstructured P2P 
(but can support 
DHT)

DHT - Tapestry (initial 
design was based on 
unstructured P2P)

DHT - Kademlia Yes Ad-hoc server selection Yes Yes Yes Yes Yes Yes

Data Type Immutable
Read-only data 
(immutable) and 
changeable data (mutable)

Immutable Immutable Immutable and Mutable Mutable immutable Mutable Mutable Immutable Mutable

De-duplication Yes Yes Yes Yes Yes (with convergence 
secret)

Yes (per 
namespace)

Yes No No N/A N/A

Entities Internal 
Identifiers

GUID (SHA256 by 
default)

SHA-1 or hash(name + 
pub_key) for mutable data Multiformat

SHA-256 (with blobref 
format)

SHA-256 (called 
capabilities)

Human readable 
name + Hash

Object name + 
Version id

Human 
readable 
name

Human 
readable 
name

N/A
Human readable 
name + Hash

Data Integrity Yes Yes Yes Yes Yes Yes Yes N/A N/A N/A N/A

Erasure Coding Via Contexts Active data and archival 
data

No No

Yes (only 3 blocks out of 
10 are needed to 
reconstruct a segment 
with the default settings)

Yes at bucket level N/A N/A N/A N/A N/A

Data replication Via Contexts Yes
Via protocols built on 
top of it Yes Yes On server-side On server-side No Via policies No On server-side

Metadata 
Support

Yes, external 
metadata model No No

Yes, via attribute 
claims

Yes, represented as the 
edges of the graph

Yes, stored via 
Edgestore

Yes, attributes 
and tags

Yes, via 
attributes

Yes, via 
attributes Yes

Yes, via 
attributes and 
embedded in 
DCX format

Versioning 
Support Yes Yes Yes Yes N/A Yes Yes No No Yes Yes

Network 
Protocol

HTTP Tapestry on top of TCP Bitswap, HTTP HTTP TCP UDP, HTTPS HTTPS N/A N/A N/A HTTPS

User model User-Role model ACL N/A N/A Yes (capabilities) Yes Yes N/A N/A N/A Yes
Data Protection Yes Yes In-transit No At-rest On server-side On server-side N/A N/A N/A On server-side
Automatic File 
Classification

Via Contexts No No No No No No Yes Yes, via 
policies

N/A No

Smart folders Via Contexts No No Yes No No No Yes Yes, via 
policies

N/A Yes

Automatic File 
Management Via Contexts No No Data importers only No Yes

Y (can set 
policies based on 
tags and prefix)

No
Yes, via 
policies Yes Yes

P2P Context-aware Storage
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