
Essentials in CS - Part II
15th October 2015
@ 1630-1830
Simone I. Conte (sic2)
http://sic2.host.cs.st-andrews.ac.uk/

Thanks to:
Shyam Reyal, Graham Kirby, Steve Linton,
Adrian O'Lenskie, Neil Moore, Peter
Brown, Mark-Jan Neederhof, Alex Voss,
Martin McCaffery, Shyam Reyal, Ian
Paterson, Nick Goodall, Richie McMahon,
Ishbel Duncan, Jan de Muijnck-Hughes,
Lee Huang, Andrew Matheson, Daniel
Patterson, Chris Jefferson

all other people I have met over the years

and Stackoverflow
1

http://sic2.host.cs.st-andrews.ac.uk/
http://sic2.host.cs.st-andrews.ac.uk/

Credits
Clean Code - Available in library (x4)

@@@

CS5030/1 by Alex Voss

https://studres.cs.st-andrews.ac.uk/CS5031/

@@@

Experts’ opinions

https://sic2.host.cs.st-andrews.ac.uk/aiq.html

2

https://studres.cs.st-andrews.ac.uk/CS5031/
https://studres.cs.st-andrews.ac.uk/CS5031/
https://sic2.host.cs.st-andrews.ac.uk/aiq.html
https://sic2.host.cs.st-andrews.ac.uk/aiq.html

Outline

● Aims

● Marking scale

● Becoming a better

○ Programmer

○ Computer Scientist

● Good and Bad code

● Reproducibility and Testing
3

The 20 marking scale

4

The 20 marking scale

5

The 20 marking scale

6
Relativity (M. C. Escher)

 1953

Mark Descriptors (General)

7

Mark Descriptors (CW I)

8

Mark Descriptors (CW II)

9

Mark Descriptors (CW III)

More here → https://info.cs.st-andrews.ac.uk/student-handbook/learning-teaching/feedback.html
10

https://info.cs.st-andrews.ac.uk/student-handbook/learning-teaching/feedback.html

The 20 grading scale

● We do not mark down
● We do not mark up
● We use mark descriptors and our own judgment

● This workshop is about *What we think good code looks like* and
there might not be a 1:1 correspondence with the mark you will get

● Work hard

11

12

Who are you?
● Students
● Interns
● Future engineers
● Future scientists
● Computer scientists
● Future St Andrews Graduates
● Innovators
● Lots more

13

Improve your coursework
Aims of workshop

● Not necessarily better grades, that is up to the markers
● Cannot cover everything in 2 hours (150+ slides)

○ Will be superficial over some bits.

● Understand the basic ideas behind good code
● Improve yourself, know what to expect when working for industry

14

Some feedback - Steve Linton
“Overall, you're good at getting the program to do what you want it to,

but that isn't the point (at least in the upper grade ranges where

you should be playing). You should produce simple, clean code,
relevant comments, matching design and you should, always, always,
stick to the documented behaviour of interfaces.”

15

Some feedback - Mark-Jan Nederhof
* Foremost, carefully read the specification of the assignment.

Creating software to match specs is an important skill in computer science.

* Complexity is not something to strive for in programming.

If you can solve a task in a simple way, it is almost always better than solving it

in a complex way.

16

Why good code matters
● Your marker
● Yourself
● You are not alone
● Mantaining code

○ agility - ability to adapt quickly to needs
○ billions of lines of code (see Google, FB, etc)

17

Why good code matters
4 - Code is like a poem; it's not just something we write to reach some practical
result. Sometimes people that are far from the Redis philosophy suggest using
other code written by other authors (frequently in other languages) in order to
implement something Redis currently lacks. But to us this is like if Shakespeare
decided to end Enrico IV using the Paradiso from the Divina Commedia. Is using
any external code a bad idea? Not at all. Like in "One Thousand and One
Nights" smaller self contained stories are embedded in a bigger story, we'll be
happy to use beautiful self contained libraries when needed. At the same time,
when writing the Redis story we're trying to write smaller stories that will fit in to
other code.

[Antirez, Redis Manifesto]
18

http://www.osnews.com/story/19266/WTFs_m 19

http://www.osnews.com/story/19266/WTFs_m
http://www.osnews.com/story/19266/WTFs_m

What is Good Software?

● The software should deliver the required functionality and should be:
○ Delivered on time and on budget
○ Maintainable
○ Dependable
○ Secure
○ Efficient
○ Usable
○ Accepted by its users

● Software engineering is concerned with producing the best possible software
but this involves trade-offs.

20

ABC

Credits to https://medium.com/@davidbyttow/abc-always-be-coding-d5f8051afce2
21

https://medium.com/@davidbyttow/abc-always-be-coding-d5f8051afce2

I want to be a better Computer Scientist

● Be passionate, stubborn, humble, and read-read-read!

● Also, think out of the box :)

● 10k-hrs rule - http://norvig.com/21-days.html

22

http://norvig.com/21-days.html

23

24http://mishadoff.com/blog/programming-digest-2/

http://mishadoff.com/blog/programming-digest-2/
http://mishadoff.com/blog/programming-digest-2/

25http://pomodorotechnique.com/

https://xkcd.com/1319/

http://pomodorotechnique.com/
http://pomodorotechnique.com/
https://xkcd.com/1319/
https://xkcd.com/1319/

Time management - Summary

Different philosophies, different approaches, different techniques.

All have:
● Have breaks while working
● Have a life too
● Do not be afraid of getting it wrong

Later Equals Never
http://robertgreiner.com/2011/07/later-equals-never/

26

http://robertgreiner.com/2011/07/later-equals-never/
http://robertgreiner.com/2011/07/later-equals-never/

Process Models
5 Minutes in Software Engineering techniques to go from requirements to code to
product.

● Minimal Model (X)
● Waterfall (w/wo feedback) (X)
● Scrum (3rd year project) (V)
● Pair Programming (1st, 2nd year group projects) (?)
● Etc.

Not all of these are good

27

Minimal Software Process Model

Winston W. Royce,

Managing the Development of Large Software Systems
28

The “Waterfall” Model - w/wo feedback

29Paper http://www.cs.umd.edu/class/spring2003/cmsc838p/Process/waterfall.pdf

http://www.cs.umd.edu/class/spring2003/cmsc838p/Process/waterfall.pdf

30Source https://www.ics.ie/news/view/1653

https://www.ics.ie/news/view/1653

Pair Programming

Source: http://techiejs.com/Blog/Post/Working-Agile-like-with-SCRUM-and-Extreme-Programming 31

http://techiejs.com/Blog/Post/Working-Agile-like-with-SCRUM-and-Extreme-Programming

Summary about SE Processes
● Do you need to know all this stuff to be successful in my coursework?

○ NO

● Be agile
● Listen to your client
● Use/Test your code
● Do not be afraid of changing your design/code
● Tradeoff between perfection and productivity

32

33

5-10 minutes of Common Mistakes in Java/C

34

Common Mistakes (Java) I
public class StaticDemo

{

 public String my_member_variable = "somedata";

 public static void main (String args[])

 {

// Access a non-static member from static method

 System.out.println ("This generates a compiler error" +

my_member_variable);

 }

}

35

Common Mistakes (Java) II
public class MyWindowListener extends WindowAdapter {

// This should be WindowClosed

public void WindowClose(WindowEvent e) {

// Exit when user closes window

System.exit(0);

}

});

36

Common Mistakes (Java) IV
{

Connection dbConnection = initConnect();

PreparedStatement query = c.preparedStatement(...);

…
ResultSet resultSet = query.execute();

…
???

}

37

Common Mistakes (Java) IV
{

Connection dbConnection = initConnect();

PreparedStatement query = c.preparedStatement(...);

…
ResultSet resultSet = query.execute();

…
resultSet.close();

query.close();

dbConnection.close();

}

38

Common Mistakes (Java 7+) IV - AutoClosable
try (

Connection dbConnection = initConnect();

PreparedStatement query = c.preparedStatement(...);

) {

// code

resultSet = query.execute();

// code

} catch (...) {}

finally {

if (resultSet != null) resultSet.close();

}
39

Common Mistakes (Java) V
= instead of ==

== instead of equals

by value (primitive) vs by reference (objects)

40

Common Mistakes (C/Java) I
int x = 2;

switch(x) {

case 2:

 printf("Two\n");

case 3:

 printf("Three\n");

}

41

int a[10]; // from 0 to 9, not to 10 (same in Java)

char ch = 'A'; /* correct */

char ch = "A"; /* error */

const char * st = "A"; /* correct */

const char * st = 'A'; /* error */

Common Mistakes (C) II

42

Common Mistakes (C) III
char st1[] = "abc";

char st2[] = "abc";

if (st1 == st2)

 printf("Yes");

else

 printf("No");

43

Common Mistakes (C) III
if (strcmp(st1,st2) == 0)

 printf("Yes");

else

 printf("No");

44

“Don't judge people based on code. You don't know under what conditions the code was
written, there was likely an idiot manager forcing the developer to compromise.”
(A. O’Lenskie - Adobe)

“I think choosing technology/platforms wisely is quite a big one. Also timing is important.”
(N. Moore - Adobe)

“I think for early students, the most important thing is to try to make their program
compile and run (so they can test it) as early as possible, then keep iterating by adding
small features and retesting.”
(C. Jefferson - St Andrews)

What the experts say

45

Know the basics

● Primitives
● Strings
● OOP
● Streams
● Data Structures
● Exceptions
● Etc

46https://xkcd.com/571/

https://xkcd.com/571/
https://xkcd.com/571/

The wheel problem

“I reinvented the wheel last week. I
sat down and deliberately coded
something that I knew already
existed, and had probably also
been done by many many other
people. In conventional
programming terms, I wasted my
time. But it was worthwhile, and
what's more I would recommend
almost any serious programmer do
precisely the same thing.”

James Hart

Who's James Hart?
Just another programmer.

47https://www.linkedin.com/pulse/stop-reinventing-wheel-philip-holt

https://www.linkedin.com/pulse/stop-reinventing-wheel-philip-holt
https://www.linkedin.com/pulse/stop-reinventing-wheel-philip-holt

Verification & Validation

● Verification:
○ are we building the system right (according to its specification)?

● Validation:
○ are we building the right system (the one the users require)?

48

Break your own code!
Be active and become the hacker of your own product.

There is not a guide book or some other type of Holy Grail.
The more you program, the more you challenge yourself, the better you get to
break code.

Note: breaking others’ code is illegal

TopCoder challenge’s steps:

● Solve
● Break
● Test https://www.topcoder.com/

49

https://www.topcoder.com/
https://www.topcoder.com/

50

Know how to use
internet!

This is what I got when looking for:
“Bomb in a shelf security example”

51

https://www.reddit.
com/r/pics/comments/klr85/hackers_can
_turn_your_home_computer_into_a_bo
mb/

https://www.reddit.com/r/pics/comments/klr85/hackers_can_turn_your_home_computer_into_a_bomb/
https://www.reddit.com/r/pics/comments/klr85/hackers_can_turn_your_home_computer_into_a_bomb/
https://www.reddit.com/r/pics/comments/klr85/hackers_can_turn_your_home_computer_into_a_bomb/
https://www.reddit.com/r/pics/comments/klr85/hackers_can_turn_your_home_computer_into_a_bomb/
https://www.reddit.com/r/pics/comments/klr85/hackers_can_turn_your_home_computer_into_a_bomb/

Software Testing

52
http://cartoontester.
blogspot.co.uk/

http://cartoontester.blogspot.co.uk/
http://cartoontester.blogspot.co.uk/
http://cartoontester.blogspot.co.uk/

What to test?

● Inputs
● Edge-cases
● Conditionals
● Manual vs Automated

53

Make it so simple that there are obviously no bugs,
or so complex that there are no obvious bugs.
[Tony Hoare - The Emperor’s Old Clothes (1981)]

What to test?

● Inputs
● Edge-cases
● Conditionals
● Manual vs Automated

● JUnit, TestNG, mockito
● gtest, gmock
● Karma, Protractor
● etc..

54

F.I.R.S.T.
● Fast

○ so you can run them often

● Independent
○ from each other

● Repeatable
○ in any envirnment

● Self-validating
○ either pass or fail

● Timely
○ write them beforehand

55Source: http://agileinaflash.blogspot.de/2009/02/first.html

http://agileinaflash.blogspot.de/2009/02/first.html

Computer Science
Make sure your code is

● Clear
● Can take different inputs
● Repeatable
● Produces clear outputs
● Runs in the lab machines at least
● Scientific!

56http://www.wired.com/2007/06/computer_scienc/

http://www.wired.com/2007/06/computer_scienc/
http://www.wired.com/2007/06/computer_scienc/

Style Matters

57

58

Wait… what?
private int parentClassType() {

 if (1 == 2)

 {

 return PARENT_MY_SCHEDULE_ACTIVITY;

 } else

 {

 return PARENT_MY_SCHEDULE_ACTIVITY;

 }

}

Other examples here: https://www.reddit.com/r/badcode 59

https://www.reddit.com/r/badcode

This was for a chatbot

60https://www.reddit.com/r/badcode/comments/3ko55o/someone_tried_to_make_a_chatbot_for_a_programming/

https://www.reddit.com/r/badcode/comments/3ko55o/someone_tried_to_make_a_chatbot_for_a_programming/
https://www.reddit.com/r/badcode/comments/3ko55o/someone_tried_to_make_a_chatbot_for_a_programming/

Rounding numbers

61https://www.reddit.com/r/badcode/comments/3j37iy/if_you_can_not_round_numbers/

https://www.reddit.com/r/badcode/comments/3j37iy/if_you_can_not_round_numbers/
https://www.reddit.com/r/badcode/comments/3j37iy/if_you_can_not_round_numbers/

Obfuscated Code
float s=1944,x[5],y[5],z[5],r[5],j,h,a,b,d,e;int i=33,c,l,f=1;int g(){return f=

(f*6478+1)%65346;}m(){x[i]=g()-l;y[i]=(g()-l)/4;r[i]=g()>>4;}main(){char t[1948

]=" `MYmtw%FFlj%Jqig~%`jqig~Etsqnsj3stb",*p=t+3,*k="3tjlq9TX";l=s*20;while(i<s)

p[i++]='\n'+5;for(i=0;i<5;i++)z[i]=(i?z[i-1]:0)+l/3+!m();while(1){for(c=33;c<s;

c++){c+=!((c+1)%81);j=c/s-.5;h=c%81/40.0-1;p[c]=37;for(i=4;i+1;i--)if((b=(a=h*x

[i]+j*y[i]+z[i])*a-(d=1+j*j+h*h)*(-r[i]*r[i]+x[i]*x[i]+y[i]*y[i]+z[i]*z[i]))>0)

{for(e=b;e*e>b*1.01||e*e<b*.99;e-=.5*(e*e-b)/e);p[c]=k[(int)(8*e/d/r[i])];}}for

(i=4;i+1;z[i]-=s/2,i--)z[i]=z[i]<0?l*2+!m():z[i];while(i<s)putchar(t[i++]-5);}}

62Source http://www.ioccc.org/years.html#1996_eldby

http://www.ioccc.org/years.html#1996_eldby

Good code example
public static void main(String[] args) {

 System.out.println("Hello, World");

}

63

Checking Style Tools
There are many of them.

● Java - PMD, FindBugs, JTest, Checkstyle
● C - QA-C, CodeSonar
● C++ - PC-Lint, C++Test, Coverity
● C# - FxCop, StyleCop, TICS
● Python - pylint, pep-8, pychecker
● etc ...

Many False-Positives!

Many options. There is not a right one → best check style tool is you!
64

Watch-Out for warnings
● C/C++

○ -Werror (make all warnings into errors); -Wall; -Wextra
○ Windows - /Wn; /WX; /Wall; etc
○ Look after your compiler

● Java
○ -Xlint (enables all recommended warnings)
○ http://docs.oracle.com/javase/7/docs/technotes/tools/solaris/javac.html

● Know your language

65

http://docs.oracle.com/javase/7/docs/technotes/tools/solaris/javac.html
http://docs.oracle.com/javase/7/docs/technotes/tools/solaris/javac.html

Indentation
Many styles → https://en.wikipedia.org/wiki/Indent_style

There is not a right one

Be reasonable and consistent

66

https://en.wikipedia.org/wiki/Indent_style

Formatting

● Vertical formatting

○ keep things to a length that people will want to read.

○ separate thoughts by empty lines, keep related thoughts close

● Place variables close to where they are used.

● Instance variables should be at the top of a class.

● Prefer short lines over long ones, avoid lines of more than 80 characters,
never use more than, say, 100.

● Use IDE tools to keep things tidy and aligned with a consistent code style
(week 7 - 1st year)

67

Formatting

● Space vs Tabs

68

Formatting - Example
private int x; // this is fine

private Color color; // this too

private int x; // permitted, but future edits

private int y;

private Color color; // may leave it unaligned

private int y;

Google Java Style guide: https://google.github.io/styleguide/javaguide.html#s4.6.3-horizontal-alignment 69

https://google.github.io/styleguide/javaguide.html#s4.6.3-horizontal-alignment

Comments (I)
/**

* For the brave souls who get this far: You are the chosen ones,

* the valiant knights of programming who toil away, without rest,

* fixing our most awful code. To you, true saviors, kings of men,

* I say this: never gonna give you up, never gonna let you down,

* never gonna run around and desert you. Never gonna make you cry,

* never gonna say goodbye. Never gonna tell a lie and hurt you.

*/

Credits to the SO Community - http://stackoverflow.com/questions/184618/what-is-the-best-comment-in-source-code-you-
have-ever-encountered 70

http://stackoverflow.com/questions/184618/what-is-the-best-comment-in-source-code-you-have-ever-encountered
http://stackoverflow.com/questions/184618/what-is-the-best-comment-in-source-code-you-have-ever-encountered
http://stackoverflow.com/questions/184618/what-is-the-best-comment-in-source-code-you-have-ever-encountered

Comments (II)
//

// Dear maintainer:

//

// Once you are done trying to 'optimize' this routine,

// and have realized what a terrible mistake that was,

// please increment the following counter as a warning

// to the next guy:

//

// total_hours_wasted_here = 42

//

71
Credits to the SO Community - http://stackoverflow.com/questions/184618/what-is-the-best-comment-in-source-code-you-
have-ever-encountered

http://stackoverflow.com/questions/184618/what-is-the-best-comment-in-source-code-you-have-ever-encountered
http://stackoverflow.com/questions/184618/what-is-the-best-comment-in-source-code-you-have-ever-encountered
http://stackoverflow.com/questions/184618/what-is-the-best-comment-in-source-code-you-have-ever-encountered

Comments (III)
//When I wrote this, only God and I understood what I was doing

//Now, God only knows

72
Credits to the SO Community - http://stackoverflow.com/questions/184618/what-is-the-best-comment-in-source-code-you-
have-ever-encountered

http://stackoverflow.com/questions/184618/what-is-the-best-comment-in-source-code-you-have-ever-encountered
http://stackoverflow.com/questions/184618/what-is-the-best-comment-in-source-code-you-have-ever-encountered
http://stackoverflow.com/questions/184618/what-is-the-best-comment-in-source-code-you-have-ever-encountered

Comments (IV)
return 1; # returns 1

73
Credits to the SO Community - http://stackoverflow.com/questions/184618/what-is-the-best-comment-in-source-code-you-
have-ever-encountered

http://stackoverflow.com/questions/184618/what-is-the-best-comment-in-source-code-you-have-ever-encountered
http://stackoverflow.com/questions/184618/what-is-the-best-comment-in-source-code-you-have-ever-encountered
http://stackoverflow.com/questions/184618/what-is-the-best-comment-in-source-code-you-have-ever-encountered

Comments (V)
/**

 * Always returns true.

 */

public boolean isAvailable() {

 return false;

}

74
Credits to the SO Community - http://stackoverflow.com/questions/184618/what-is-the-best-comment-in-source-code-you-
have-ever-encountered

http://stackoverflow.com/questions/184618/what-is-the-best-comment-in-source-code-you-have-ever-encountered
http://stackoverflow.com/questions/184618/what-is-the-best-comment-in-source-code-you-have-ever-encountered
http://stackoverflow.com/questions/184618/what-is-the-best-comment-in-source-code-you-have-ever-encountered

Comments (VI)
long long ago; /* in a galaxy far far away */

75
Credits to the SO Community - http://stackoverflow.com/questions/184618/what-is-the-best-comment-in-source-code-you-
have-ever-encountered

http://stackoverflow.com/questions/184618/what-is-the-best-comment-in-source-code-you-have-ever-encountered
http://stackoverflow.com/questions/184618/what-is-the-best-comment-in-source-code-you-have-ever-encountered
http://stackoverflow.com/questions/184618/what-is-the-best-comment-in-source-code-you-have-ever-encountered

Comments (VII)
// I can't divide with zero, so I have to divide with something

very similar

result = number / 0.00000000000001;

76
Credits to the SO Community - http://stackoverflow.com/questions/184618/what-is-the-best-comment-in-source-code-you-
have-ever-encountered

http://stackoverflow.com/questions/184618/what-is-the-best-comment-in-source-code-you-have-ever-encountered
http://stackoverflow.com/questions/184618/what-is-the-best-comment-in-source-code-you-have-ever-encountered
http://stackoverflow.com/questions/184618/what-is-the-best-comment-in-source-code-you-have-ever-encountered

Lessons learned
Funny comments waste time - wasted time to write, wasted time to read, wasted
time to show to your colleagues the funny remark that is (almost always) merely
puzzling and so on.

If funny comments were actually funny it would change my mind. But once you
encourage jokes, do you encourage swearing or insults or maliciousness?

Credits to user amelvin - http://programmers.stackexchange.com/questions/60699/is-funny-commenting-a-bad-practice-or-not

77

http://programmers.stackexchange.com/questions/60699/is-funny-commenting-a-bad-practice-or-not

Other bad examples
fred.penColor(Color.blue);

 // the colour of the pen has been set to blue

tom.bodyColor(Color.red);

 // the turtle's body colour has been changed to blue

//imports Turtle Donald into Drawing Window Object

DrawingWindow.add(Martin);
78

Good Comments
● Legal comments (author, copyright, license etc.);

○ IDEs might collapse lengthy legal comments

● Informative Comments
● JavaDoc comments in public APIs
● Expressing intention
● Clarifications
● Explaining code that cannot be changed and is therefore unclear

○ e.g., when using a standard library

● Warning of consequences
● TODO/FIXME comments
● Highlighting something as important that is not obvious

79

Good Comments - Example I
// format matcher kk:mm:ss EEE, MMM dd, yyyy

Pattern timeMatcher =

Pattern.compile(“\\d*:\\d*:\d* \\w*, \\w* \\d*, \\d*”);

80Credits to CleanCode

Good Comments - Example II
// Every multiple in the array has a prime factor that

// is less than or equal to the root of the array size,

// so we don’t have to cross out multiples of numbers

// larger than that root

double iterationLimit = Math.sqrt(crossedOut.length);

return (int) iterationLimit;

81Credits to CleanCode

Summary
Don’t comment bad code, rewrite it
(Kernighan, Plaugher)

● Be informative
● Be clear
● Be consistent
● Avoid comments if you can communicate intention through code
● Do not leave commented code around if not needed

82

83

Naming Practices
Names are everywhere in software. And software must be readable by us and
others.

● Intention-revealing names
● Avoid disinformation
● Pronouncable and searchable names

84

Use Intention-Revealing names
● the names of variables, methods, classes etc. should tell what these things

are about.

Bad
● d, h, t, es, p
● list, array, space
● getThem(), get()
● users, active

Good
● distance, height, time
● board, cell
● getWeight(), getMachine()
● numberOfUsers,

numberOfActiveUsers

85

Avoid Disinformation
● do not refer to something as a List unless it actually is a List.

Bad
● hp, aix, sco (UNIX)
● accountList (for array)
● XYZAccountControllerList

vs XYZAccountHandlerList
● l (vs 1)
● O (vs 0)
● O1, Ol, 0l, 01

Good
● hypotenuse, axes, etc

● accountGroups, accounts
● accountController vs

accountHandler

86

Pronouncable and Searchable names
Humans are good at words. And words are pronouncable.

Bad
● DtaRcrd102
● genymdhms
● modymdhms
● srchbl
● 7, 15
● t

Good
● Customer
● generationTimestamp
● modificationTimestamp
● searchable
● MAX_NUMBER_MACHINES, TASKS_THRESHOLD
● tasks

87

Others
● Classes should have noun or noun-phrase names rather than verb names

○ avoid empty words such as Info, Data, Manager, Processor in a class name
○ Ex: Customer, WikiPage, Account, HashIntegrationTest, ImmutableList, etc

● Methods should have a verb name
○ Accessors, mutators, and predicates should be named for their value and prefixed with get,

set, and is
○ Ex: sendMessage(), stop(), receiveMessage(), sendAck(), getUsername(), etc

● “Don’t be cute”
○ Ex: kill(), abort(), deleteItems() instead of whack(), eatMyShorts(), HolyHandGranade()

● Avoid single-letter variable names and similar things that have nothing to
do with the problem domain.

Check https://studres.cs.st-andrews.ac.uk/CS5031/Lectures/week04/cleancode.html (based on Clean Code book) 88

https://studres.cs.st-andrews.ac.uk/CS5031/Lectures/week04/cleancode.html

Others
● Classes → use singular names
● Fine to have one-single-letter variables for counter variables

○ for(int i = 0; i < CONSTANT; i++)

● Some counter variable may be better “extended”
○ for(int cell=0; cell < board[0].length; cell+)

Check https://studres.cs.st-andrews.ac.uk/CS5031/Lectures/week04/cleancode.html (based on Clean Code book) 89

https://studres.cs.st-andrews.ac.uk/CS5031/Lectures/week04/cleancode.html

Summary
● Be consistent
● Be reasonable
● Use meaningful names
● Use readable names
● Use searchable names
● Use unambiguous names
● Avoid colloquialism

90

Daniel Patterson, Sumdog
Think hard about how to name things. Names for objects and variables should
describe what it is so that you don't need to refer back to its definition. It should
describe what it is now, not what you want it to be eventually.

Single Responsibility Principle - objects and functions should do one thing. This
means that you should be able to describe them without using 'and' / 'or'.
Typically, it means functions shouldn't be more than 5 or 6 lines of code and
shouldn't be indented more than once - so only one level of loops or conditional
branching. This makes code much easier to read and reuse.

91

Methods/Functions
● Make them small!
● Do one thing, do it well, do it only!
● Keep them about 15-20 lines long MAX!

○ Others suggest to have about 5-10 lines AND max 1 conditional statement

● Do not mix levels of abstraction
● Have no side effects
● Either change state or return a value/object
● Do not repeat yourself!

92

Methods/Functions - Example I
Bad

public boolean checkPwd(String[] usr, String[] pwd) {

 this.pwd = pwd;

 int[] valids = new int[10];

 for(int i = 0; i < 10; i++)

if (usr[i].pwd == pwd[i] && pwd[i].length() > 10)

 valids[i] = 1;

 int c = 0;

 for(int i = 0; i < 10; i++) if (valids[i]) c++;

 return c > 5 ? true : false;

}
93

Methods/Functions - Example I
Better

public boolean checkPassword(String user, String password) {
 return (user.password.equals(password) &&
 password.length() > MIN_PASSWORD_SIZE);
}

94

Methods/Functions - Example I
Better ???

Ideally we should check the password validity before having set it

public boolean checkPassword(String user, String password) {
 return (user.password.equals(password) &&
 password.length() > MIN_PASSWORD_SIZE);
}

95

BAD
boolean val = true;

boolean stop = false;

while (i < n && !stop) {

if (f(i)) {

 val = false;

 stop = true;

}

i++;

}

return val;

Methods/Functions - Example II

96

BETTER
while (i < n) {

if (f(i))

 return false;

i++;

}

return true;

Methods/Functions - Example II

97

BAD
if (f1(i))

return true;

else if (f2(i))

return true;

else

return false;

Methods/Functions - Example III

98

BETTER
return f1(i) || f2(i);

Methods/Functions - Example III

99

Trainwrecks
client.getAccounts().getAccount(1).applyPayment(300.00);

100

Trainwrecks
client.getAccounts().getAccount(1).applyPayment(300.00)

Better

AccountsGroup accounts = client.getAccounts();

Account accountToPay = accounts.getAccount(1);

accountToPay.applyPayment(300.0);

101

Magic Numbers
if (boom==3)

 explode();

else

 later(5000);

102

Magic Numbers
Better

private final static int TIMER_IS_OFF = 3;

private final static int BOMB_WAITING_WINDOW = 5000; // in ms

if (boom==TIMER_IS_OFF)

 explode();

else

 later(BOMB_WAITING_WINDOW);

103

Static methods
Ask yourself:

“does it make sense to call this method, even if no Object has been
constructed yet?”

● convertMilesToKilometers()
● setSpeed()
● performFuelCleanup()
● removeWheel()
● makeString(int[])

104

Static methods - Tips

1. If you are writing utility classes and they are not supposed to be changed.

2. If the method is not using any instance variable.

3. If any operation is not dependent on instance creation.

4. If there is some code that can easily be shared by all the instance
methods, extract that code into a static method.

5. If you are sure that the definition of the method will never be changed or
overridden. As static methods can not be overridden.

105

Some advice from great experts
Lots of indentation (> 2 levels) is a bad smell - I would tend to extract the
indented code to another private method.
[R. McMahon - Adobe]

106

Some advice from great experts
I think for early students, the most important thing is to try to make their
program compile and run (so they can test it) as early as possible, then keep
iterating by adding small features and retesting. [...] Automating these tests will

make things easier, but the important thing is to try not to write a few hundred
lines of code, and only then try to make their code compile / run.

[C. Jefferson - St Andrews]

107

108

The Simpler The Better
● Patterns
● OOP
● Reusability
● Refactoring
● APIs

109

Software Design Patterns
● Abstract Factory
● MVC
● Singleton
● Observer
● RAII - Resource Acquisition Is Initialisaiton
● Proxy
● Etc...

110

MVC - Model-View-Controller

111

Abstract Factory

112

OOP
● Inheritance
● Composition
● Generics
● Interfaces
● Abstraction
● Polymorphism
● Etc.

113

Example: Composition over Inheritance
B:

● higher flexibility
● better maintanability in the long term
● changes do not propagate over the hierarchy
● Go uses composition exclusively

C:

● multiple methods’ implementations

114

What the experts suggest
● Lean heavily on your tools.
● Design systems in layers, so that they can be composed, layers can be

swapped out, etc.
● Try to keep your layers simple - the less they do the less likely you are to

want/need to replace them at a later date.

[Louis Morgan - Adobe]

115

Reusability & Refactoring
Write code once if possible - if you find yourself writing the same code twice (or
cutting and pasting some code) use a function instead.

[Peter Brown - Adobe]

Do not be afraid of changing and refactoring your code/design.

116

Interfaces/API
● Be clear and consistent
● Offer a variety of data formats (JSON, XML, etc) (API mostly)
● Make the syntax intuitive and easy to understand
● Thorough documentation
● Use proper response codes

Don’t put instance data in interfaces (interfaces are for function declarations).
[Peter Brown - Adobe]

Resources:
http://stackoverflow.com/questions/6500468/recommendations-for-writing-an-api
http://lcsd05.cs.tamu.edu/slides/keynote.pdf

117

http://stackoverflow.com/questions/6500468/recommendations-for-writing-an-api
http://stackoverflow.com/questions/6500468/recommendations-for-writing-an-api
http://lcsd05.cs.tamu.edu/slides/keynote.pdf
http://lcsd05.cs.tamu.edu/slides/keynote.pdf

Reproducibility
● CS → Computer Science
● Do not hardcode the state of your program
● Let the user input parameters
● Let the user use different configurations
● Avoid randomness wherever possible

118

Simplistic vs Engineered
Hot-topic

● Too simplistic
● Overly engineered
● Find a tradeoff

HTTP Status Code example:
https://blogs.dropbox.com/developers/2015/04/how-many-http-status-codes-
should-your-api-use/

119

https://blogs.dropbox.com/developers/2015/04/how-many-http-status-codes-should-your-api-use/
https://blogs.dropbox.com/developers/2015/04/how-many-http-status-codes-should-your-api-use/
https://blogs.dropbox.com/developers/2015/04/how-many-http-status-codes-should-your-api-use/

Prince of Persia

http://www.fabiensanglard.net/prince_of_persia/pop_boot2.php
120

http://www.fabiensanglard.net/prince_of_persia/pop_boot2.php
http://www.fabiensanglard.net/prince_of_persia/pop_boot2.php
http://www.youtube.com/watch?v=gC3WEwSJoHs

Prince of Persia

http://www.fabiensanglard.net/prince_of_persia/pop_boot2.php
121

http://www.fabiensanglard.net/prince_of_persia/pop_boot2.php
http://www.fabiensanglard.net/prince_of_persia/pop_boot2.php

Today your life is easier...or not?

122

Today your life is easier...or not?

123

DO NOT DO THIS!
1. Lie in the comments. You don't have to actively lie, just fail to keep comments as up to date with

the code.

2. Make sure that every method does a little bit more (or less) than its name suggests.

3. In the name of efficiency, use cut/paste/clone/modify. This works much faster than using many
small reusable modules.

4. Try to pack as much as possible into a single line

5. Use very long variable names that differ from each other by only one character, or only in
upper/lower case.

6. In naming functions, make heavy use of abstract words like it, everything, data, handle, stuff,..

7. Make as many of your variables as possible static.

8. Declare every method and variable public. After all, somebody, sometime might want to use it.

9. You get the pattern...
https://www.doc.ic.ac.uk/~susan/475/unmain.html

124

https://www.doc.ic.ac.uk/~susan/475/unmain.html
https://www.doc.ic.ac.uk/~susan/475/unmain.html

Good Academic Practice
TGAP - https://info.cs.st-andrews.ac.uk/student-handbook/academic/gap.html

CS Handbook - https://info.cs.st-andrews.ac.uk/student-handbook/academic/gap.
html

125

https://info.cs.st-andrews.ac.uk/student-handbook/academic/gap.html
https://info.cs.st-andrews.ac.uk/student-handbook/academic/gap.html
https://info.cs.st-andrews.ac.uk/student-handbook/academic/gap.html
https://info.cs.st-andrews.ac.uk/student-handbook/academic/gap.html

Example - README
Third party resources

The makefile is a modified version of the one provided by [Michael Safyan](https://sites.google.
com/site/michaelsafyan/software-engineering/how-to-write-a-makefile)

Wavefront .obj loader (slightly modified version): [objLoader](http://www.kixor.net/dev/objloader/)

Image library (C/C++): [CImg](http://cimg.sourceforge.net/)

Images were all downloaded from internet. See appropriate text file in Data/ for specific links.

126

Example - In your code
/*
* Profiling requires Google Perf Tools to be installed.
* The tools are installed in my Mac, but not in the Lab Linux Machine I use. Therefore, profiling is always disabled for the
latter machine.
* http://goog-perftools.sourceforge.net/
*/
#ifdef __APPLE__
#include <google/profiler.h>
void Helper::START_PROFILING(std::string fileName)
{
 if(PROFILER)

 ProfilerStart(fileName.c_str());
}
void Helper::STOP_PROFILING()
{
 if(PROFILER)

 ProfilerStop();
}
#else
void Helper::START_PROFILING(std::string fileName) {}
void Helper::STOP_PROFILING() {}
#endif

127

http://goog-perftools.sourceforge.net/

Example - In your code
// @see http://stackoverflow.com/questions/3585846/color-text-in-terminal-aplications-in-unix
// e.g. printf("%sred\n", KRED);

#define KGRN "\x1B[32m"
#define KNRM "\x1B[0m"
#define KRED "\x1B[31m"
#define KYEL "\x1B[33m"
#define KBLU "\x1B[34m"
#define KMAG "\x1B[35m"
#define KCYN "\x1B[36m"
#define KWHT "\x1B[37m"

128

http://stackoverflow.com/questions/3585846/color-text-in-terminal-aplications-in-unix

Give credits to others
● There is not a specific way of doing it as of today (15/10/2015)
● Ask yourself “am I telling others that this code is from XYZ?”

○ If not, probably you are doing something wrong

129

The evolution of a SE (I yr)

Credits to Sean Hickey - https://medium.com/@webseanhickey/the-evolution-of-a-software-engineer-
db854689243 130

The evolution of a SE (II yr)

Credits to Sean Hickey - https://medium.com/@webseanhickey/the-evolution-of-a-software-engineer-
db854689243 131

The evolution of a SE (III yr)

Credits to Sean Hickey - https://medium.com/@webseanhickey/the-evolution-of-a-software-engineer-
db854689243 132

The evolution of a SE (V yr)

Credits to Sean Hickey - https://medium.com/@webseanhickey/the-evolution-of-a-software-engineer-
db854689243 133

The evolution of a SE (V yr) cont

Credits to Sean Hickey - https://medium.com/@webseanhickey/the-evolution-of-a-software-engineer-
db854689243 134

The evolution of a SE (X yr)

Credits to Sean Hickey - https://medium.com/@webseanhickey/the-evolution-of-a-software-engineer-
db854689243 135

So what?
● Programming is hard

136

http://blogs.adobe.com/conversations/2015/10/at-max-content-velocity-meets-its-match.html?
scid=social53499006&adbid=967586483284685&adbpl=fb&adbpr=341657335877606

137

http://blogs.adobe.com/conversations/2015/10/at-max-content-velocity-meets-its-match.html?scid=social53499006&adbid=967586483284685&adbpl=fb&adbpr=341657335877606
http://blogs.adobe.com/conversations/2015/10/at-max-content-velocity-meets-its-match.html?scid=social53499006&adbid=967586483284685&adbpl=fb&adbpr=341657335877606
http://blogs.adobe.com/conversations/2015/10/at-max-content-velocity-meets-its-match.html?scid=social53499006&adbid=967586483284685&adbpl=fb&adbpr=341657335877606

138

So what?
● Programming is hard
● Takes time
● Talk about your design
● Be stubborn

○ do not be afraid of changing/refactoring your code

● Have some (a lot of) self-criticism
● The simpler the better
● Do not over-engineer if not needed
● Check how others write code (i.e. GitHub)

○ remember that most people write bad code!

139

Thanks! Questions?

140

Experts’ Opinions - keeps updating - https://sic2.host.cs.st-andrews.ac.uk/aiq.html

https://sic2.host.cs.st-andrews.ac.uk/aiq.html

Additional Slides - just for reference
School Handbook - https://info.cs.st-andrews.ac.uk/student-handbook/learning-
teaching/programming-style.html

141

https://info.cs.st-andrews.ac.uk/student-handbook/learning-teaching/programming-style.html
https://info.cs.st-andrews.ac.uk/student-handbook/learning-teaching/programming-style.html
https://info.cs.st-andrews.ac.uk/student-handbook/learning-teaching/programming-style.html

Other bad examples
 public void addChange(int change) {

 this.takings = takings + change;

 }

could be

 public void addChange(int change) {

 takings += change;

 }

142

Other bad examples
 if (condition && condition2 && condition3 && condition4 && condition5 && condition6) {

}

could be

 if (condition && condition2 &&

 condition3 && condition4 &&

 condition5 && condition6) {

 }

143

Comments on static constants
Where you use an attribute as an absolute constant like MAX_ROWS it is

usual to declare it static (so that only one copy is kept) and final
(so that the compile knows it can't be overridden or changed. This

allows the compiler to optimize better.”

144

Done Manifesto
1. There are three states of being. Not knowing, action and completion.
2. Accept that everything is a draft. It helps to get it done.
3. There is no editing stage.
4. Pretending you know what you're doing is almost the same as knowing what you are doing, so just

accept that you know what you're doing even if you don't and do it.
5. Banish procrastination. If you wait more than a week to get an idea done, abandon it.
6. The point of being done is not to finish but to get other things done.
7. Once you're done you can throw it away.
8. Laugh at perfection. It's boring and keeps you from being done.
9. People without dirty hands are wrong. Doing something makes you right.

10. Failure counts as done. So do mistakes.
11. Destruction is a variant of done.
12. If you have an idea and publish it on the internet, that counts as a ghost of done.
13. Done is the engine of more.

Credits: http://www.brepettis.com/blog/2009/3/3/the-cult-of-done-manifesto.html 145

http://www.brepettis.com/blog/2009/3/3/the-cult-of-done-manifesto.html

Common erros in Java - Refs
http://www.open.ac.uk/StudentWeb/m874/!synterr.htm

https://docs.oracle.com/javase/tutorial/getStarted/problems/

146

http://www.open.ac.uk/StudentWeb/m874/!synterr.htm
http://www.open.ac.uk/StudentWeb/m874/!synterr.htm
https://docs.oracle.com/javase/tutorial/getStarted/problems/
https://docs.oracle.com/javase/tutorial/getStarted/problems/

