

Versioning Scientific Research Data

CS5099 Dissertation in Computer Science

MSc Advanced Computer Science

Joshua Donohue-Channon

130007105

Word count: 8000

Joshua Donohue-Channon 1

Abstract
In many academic fields, academic publications are based on newly collected data. This data often

forms the basis of a publication, it is then necessary to manage this data in a manner speeding up the

publication process due to its ability to improve data workflow. A smooth, efficient, and concise

workflow is crucial for the management, cataloguing, archiving, and publishing of data.

The University of St Andrews has developed NOMAD, a system to streamline the workflow for NMR

based research. Currently in NOMAD, users are unable to edit data because the NOMAD’s experiments

are immutable. Users can annotate and analyse the machine generated experimental data with meta

data, for example, grouping the experiments into compounds and projects. It would be useful if users

could annotate the experimental data, but doing so in a manner whereby the original data is not lost.

This project will implement a versioned storage-based service for scientific research data as a solution

to the problem faced by NOMAD. The aim is to create a file versioning system for non-computer

scientists who are unfamiliar with version control.

This project created a strong data model and developed a novel solution to versioning scientific

research data. It can also be applied to generic data, giving it a vast array of possible applications.

Joshua Donohue-Channon 2

Declaration
I declare that the material submitted for assessment is my own work except where credit is explicitly

given to others by citation or acknowledgement. This work was performed during the current

academic year except where otherwise stated. The main text of this project report is 8,000 words long,

including project specification and plan.

In submitting this project report to the University of St Andrews, I give permission for it to be made

available for use in accordance with the regulations of the University Library. I also give permission for

the title and abstract to be published and for copies of the report to be made and supplied at cost to

any bona de library or research worker, and to be made available on the World Wide Web. I retain the

copyright in this work.

Joshua Donohue-Channon

23rd October 2017

Joshua Donohue-Channon 3

Table of Contents
Abstract... 1

Declaration .. 2

1 Introduction... 5

1.1 Overview of Research Data Workflow .. 5

1.2 Workflow phases ... 5

1.3 Research Data Management .. 6

1.4 Nuclear Magnetic Resonance ... 6

1.5 The Problem... 7

1.6 The Proposed Solution ... 7

2 Objectives .. 8

2.1 Primary .. 8

2.1.1 Versioning .. 8

2.1.2 Client-side application .. 8

2.1.3 Web interface... 8

2.2 Secondary .. 8

2.2.1 Versioning .. 8

2.2.2 Client-side application .. 8

2.2.3 Web interface... 8

2.3 Tertiary .. 8

2.3.1 Versioning software.. 8

3 Context survey ... 9

3.1.1 Existing solutions .. 9

3.1.2 Version control ... 9

3.1.3 Storage based services ... 9

4 System design .. 11

5 Implementation ... 14

5.1 Add an experiment to a compound .. 15

5.2 Add a second experiment to a compound .. 15

5.3 Add an experiment to two compounds... 15

5.4 Modify an experiment .. 16

5.5 Modifying an experiment that belongs to two compounds ... 16

5.6 Remove experiment from compound ... 17

5.7 Versioning server ... 18

5.8 Web interface .. 18

5.9 Desktop application ... 18

Joshua Donohue-Channon 4

6 Evaluation .. 20

6.1 Expert Users ... 20

6.2 Objectives .. 20

6.2.1 Primary... 20

6.2.2 Secondary... 22

6.2.3 Tertiary... 22

6.3 Core versioning functionality .. 22

6.4 Code Quality .. 23

6.5 Summary.. 24

7 Future work ... 25

7.1 Advanced functionality... 25

7.2 Integration into NOMAD .. 25

7.3 Software as a Service ... 25

8 Conclusion ... 26

9 References ... 27

10 Appendix ... 29

10.1 Ethics artefact .. 29

Joshua Donohue-Channon 5

1 Introduction

1.1 Overview of Research Data Workflow
Research data workflow is the evolution through the stages of a research data lifecycle. The lifecycle

of data is the chronological steps research data goes through from the beginning phase, for example

planning an experiment or discovering resources associated with anticipated area of research, to

manipulation and analysis of the generated data, until publication of the data and report. [1]

Workflow can be categorised into two distinctive segments into which the various stages of the

lifecycle fall; active and inactive. Active is chronologically the first group of stages. ‘Active’ refers to

stages that require a significant amount of active input from the researcher. These processes are very

different compared to inactive stages because they are the creation and manipulation of data.

Examples of regular inactive phases includes publishing, archiving, and sharing. These are stages which

do not contain any creation or manipulation of data; but rather the movement of it.

Figure 1: Example of basic linear lifecycle structure.

The workflow and life cycle of data are often considered to be the same thing. There are several

categorises of lifecycle or workflow models and these can be differentiated based on either who

designed the model, or the use of it. Linear models are the easiest to understand and breakdown,

however circular models are likely the most accurate in depicting the reality of research data lifecycles.

[1]

In addition, data workflow has essential processes that also occur which do not always fall into a single

phase. These are separate processes which occur throughout the cycle in multiple phases. These

include the documentation of the workflow process, and the application of metadata, as well as the

backup of data produced, in order to prevent the possibility of physical loss or creation of errors. [1]

1.2 Workflow phases
The data produced from the active phases is not normally integrated into data repositories in many

cases. Typically, the method for recording this data is the application of physical cataloguing using

notebooks, (the online equivalent is also a regular method for recording) or some institutions may

Joshua Donohue-Channon 6

have a specialised method/ process introduced for recording data. These are often built with unique

needs in mind. As a method of cataloguing the evolution of data, this is an efficient method and if

integrated into a data repository correctly they could be an exceptionally effective form of data

management. Therefore, the method of recording the product from the active phases affects the

transition of date from the active phase onwards, and as such, it has a knock-on effect upon the

workflow. Further integration of data from the active phase would result in optimisation with an

increased likelihood of being able to avoid compromising the data with avoidable errors. There should

be an equal emphasis on both stages of a data lifecycle in terms of being managed correctly. Every

phase in a single cycle is critical and should not be overlooked or handled improperly.

It can be concluded that a smooth and concise scientific data workflow is crucial for an institutions

ability to catalogue data correctly, and therefore, manage and share their data publicly; as is promoted

by the Research Councils UK and the European Commission. [2] The optimum workflow helps

researchers to save time, reduce the likelihood of human errors where possible, and further promote

data collaboration across an institution or field of research. [1]

1.3 Research Data Management
Research data management is an integral part of research data workflow. Classically the general focus

of research data management services and systems has been on addressing the final stages of the

research data lifecycle; archiving and sharing. [3]

Research data management is the organisation and structuring of a data workflow. Effective

management is integral to successful research because it ensures the data that is the basis of the

research can be used to validate the research. [4] Successful management of data is measurable by

the accessibility and ease of comprehending said data. Therefore, data management can be measured

by the ability to obtain information when required and furthermore the data is citable and can be used

to verify research. Also, it is so that data with long term value which has been assembled can be

retrieved and understood in the future. [5]

1.4 Nuclear Magnetic Resonance
Nuclear Magnetic Resonance (NMR) spectroscopy is a research technique that utilises the intrinsic

magnetic properties of atomic nuclei. This type of spectroscopy can be used to extract physical and

chemical properties of the atoms and the molecules that contain these atoms. NMR spectroscopy is

most commonly used in organic chemistry, but it is applicable to any molecules that contain nuclei

with spin.

NMR Online Management and Datastore (NOMAD) is a cloud service principally designed to automate

and streamline the workflow for NMR spectroscopy. NOMAD handles lab management, data

acquisition, and data access. The system is currently deployed to the School of Chemistry at the

University of St Andrews, which has 6 NMR spectrometers and over 600 active users.

Joshua Donohue-Channon 7

Figure 2: Nomad compound search. [http://nomad.wp.st-andrews.ac.uk]

The NMR facility in St-Andrews University must manage large quantities of data and NOMAD, an

online cloud based research data management system, has been implemented to ensure a suitably

fast and reliable workflow. Before NOMAD was introduced the system was much more haphazard.

Experiments were booked on physical paper rather than digitally, and the resulting data was spread

across several storage units. This setup made it more likely for errors to be made, as well as more

difficult to find and collect data, reducing the efficiency and reliability of the workflow.

NOMAD's function is to improve the workflow of data produced from the NMR analysis. It falls into

several stages within this specific workflow. This data workflow is mainly handled by the Pure Data

Repository. NOMAD's first role is for lab management, this is in the form of it controlling the booking

of experiments. Its second function is to collect the raw data from the Pure data repository. Its final

function is to allow interaction between the user and the research data through an online portal. [2]

1.5 The Problem
Currently in NOMAD, users are unable to edit data because the NOMAD’s experiments are immutable.

Users can annotate and analyse the machine generated experimental data with meta data, for

example, grouping the experiments into compounds and projects. It would be useful if users could

annotate the experimental data, but doing so in a manner whereby the original data is not lost.

Implementing versioning is a possible solution.

1.6 The Proposed Solution
This project will implement a versioned storage-based service for scientific research data. The aim is

to create a file versioning system for non-computer scientists who are unfamiliar with version control.

The task will involve making the user interface simple and intuitive, this is to try to prevent the users

having to learn new technologies or version control. The end goal of the project is to build data

versioning capabilities into the NOMAD system.

Joshua Donohue-Channon 8

2 Objectives

2.1 Primary

2.1.1 Versioning
V1 Design and implement an interface for a version control system (VCS) that can be integrated

with NOMAD, and which will allow for versioning at the compound-level tracking changes in

experimental data.

2.1.2 Client-side application
A1 Design and implement a desktop application that will provide a mechanism for the user to

stage the annotated data for uploading and versioning. The application will run on the client’s

computer and will be a stand-alone application that can be installed on the client’s computer

without the need for any additional third-party software.

A2 Extend the application’s capabilities to manage the uploads in a manner that avoids race

conditions between multiple users uploading data simultaneously.

A3 Collect qualitative feedback from selected expert users of NOMAD.

2.1.3 Web interface
W1 Design and implement an interface to visualise and manage the versions of the compounds

and projects from within the NOMAD web interface.

2.2 Secondary

2.2.1 Versioning
V2 Extend the versioning capabilities of the VCS to the project-level tracking changes in

Compounds.

V3 Extend the versioning to include tracking changes in meta-data.

2.2.2 Client-side application
A4 Conduct usability testing about how users interact with the system, collecting quantitative

data and more qualitative data.

2.2.3 Web interface
W2 Implement the desktop application’s functionality in the NOMAD web interface, to remove

the need for the desktop application.

2.3 Tertiary

2.3.1 Versioning software
S1 Design and implement a system that will allow for the VCS to be applied generically to any

form of scientific data or project. The system will also contain a RESTful API that will be used

to fetch changes from the user, either through a web interface or a desktop application. The

system will be self-contained and can be deployed with minimal configuration.

Joshua Donohue-Channon 9

3 Context survey
3.1.1 Existing solutions
Versioning of scientific data is often primitive, often only consisting of a basic file naming system [6].

Standards for archiving data and maintaining records differ significantly between different science

disciplines, fields and even research groups. There are solutions for versioning databases [7] but none

for versioning smaller datasets or individual experiments. Datahub [8] is a collaboration tool for

scientific datasets, that offers tools to process, view and share data. The versioning capacities and

revision management of Datahub are developmental and do not provide a comprehensive solution

for scientific data versioning [9]. The closest solutions are pure version control systems, but version

control has a significant learning curve for those outside the realm of computer science. Hence, a more

bespoke solution is required.

3.1.2 Version control
Version control systems (VCS) track changes to documents and allow users to save versions of files,

often termed as revisions. VCS provides the ability to restore old revisions of files. This allows users to

track other users’ changes, correct errors, and improve collaboration. Some of the more popular VCS

are Git [10], Mercurial [11] and Apache Subversion (SVN) [12].

Version control systems work by finding changed files in the project directory, often using a hashing

function [13]. A hashing function will generate a universally unique identifier (UUID) [14]. Each file

save in the repository will have a UUID. When a file is changed the generated UUID from that file will

be different and so it is easily identifiable as changed. The changed file can be uploaded to the

repository. More advanced VCS will track the specific changes within the individual files and not just

the changed files. This can be done using a diff utility [15]. Manging of revisions is often done using

source trees. Source tress are a way of visualising the version control. An example of a source tree can

be seen below, in Figure 3.

Figure 3: Example of a source tree, taken from the NOMAD repository. Courtesy of Shyam Reyal.

3.1.3 Storage based services
Storage of research data is just as important as versioning. Working in a collaborative and transparent

environment is becoming crucial in the modern research community. Possible solutions to this are

simple file versioning or data attached storage. A more advanced version is a cloud based storage

system such as Dropbox [16], Google Drive [17], or OneDrive [18]. These services all have limited

Joshua Donohue-Channon 10

version control capabilities, but are more for the use of data recovery. There are many online data

platforms that provide versioning capabilities such as GitHub [19] and Bitbucket [20].

Joshua Donohue-Channon 11

4 System design
There is currently no solution on the market that will solve the problem that NOMAD is facing, nor is

there any solution that abstracts the versioning functionality of current version control system

technology. Therefore, it would be useful to create a generic versioning solution for research data that

can be applied universally.

The system will be designed in a modular manner to provide flexibility. Designing the system in this

manner makes it easier to integrate the versioning functionality into NOMAD. The project can be

tested independently and is not dependant on any given version of NOMAD, allowing it to be

developed in its own development cycle. This also improves code maintenance along the line, as

problems with versioning can be found as they are isolated to the versioning submodule. Any changes

within the submodule or the functionality of the submodule can be tested too, so that changes can be

confidently made knowing that there will not be any adverse effects or bugs. This is important as

NOMAD is currently deployed and constantly developing with functionality being added regularly.

Finally, developing in this manner will keep the options open for the project to change if needed. For

example, it will allow the tertiary objective S1 to be achieved more easily, as the application will not

need a restructure nor extensive rewriting to fulfil the objective.

NOMAD is used for interfacing primarily with NRM machines. The user can automatically schedule

their data collection. The raw data from the machines is then uploaded to a centralised data storage.

Users are notified when their data has successfully been uploaded, they may then access their data

through the NOMAD web portal.

The compounds, once stored, have their meta data stored in a MySQL database. This provides the

search functionality for the NOMAD portal. The optional interaction with the meta data database

allows for the changes to be searchable; for the data base to allow versioning it will need to be

managed in a manner that will allow that. Lambda architecture is a possible solution. [21] This is where

all entries to the database are maintained, and deletions or undo actions are stored in the database

as a new entry. This helps to protect against loss of data and removes the need to replace or modify

database entries. This way the database can store information about the versioning without having to

query the versioning information storage.

To keep the project generic and allow it to be integrated easily with other programs, the Strategy

design pattern will be used. [22] This way the user can choose how they wish to manage their meta

data, by simply implementing their own class. This way they will not need to interact with the other

functionality of the project, or change how they currently manage their meta data. This also allows

the client to choose their database solution allowing for both SQL or NoSQL databases.

For the versioning functionality of this project to be added to the current workflow of NOMAD users,

it will have to be integrated to allow users to upload their processed data. One of the main

requirements is to maintain the integrity of the raw data and ensure that there is no risk of data loss

of the original data. This proved to be a key design challenge, keeping the raw data separate to the

versioning information. This increases the amount of data stored as the raw data will be duplicated in

the versioning information. But this is viewed as beneficial, as it is an added redundancy against data

loss, especially if the versioning information is stored in a different network location.

There are three main components to the project: versioning server, desktop application, and web

interface.

Joshua Donohue-Channon 12

The versioning server is the main component for the project and manages the versioning of the

compounds and experiments. This section will utilise a version control system to help manage the

versioning without having to implement a new versioning solution.

The desktop application will be used by the user to upload their modified data. The application will

allow the user to add the changed data files to the staging area of the application. The application will

find the changed files within the data, and let the user determine which changes they wish to save

and upload to the server. Once the user is happy, the application will then upload the changes to the

server to be versioned. The desktop application will use Model-view-controller (MVC) pattern [23]

with JavaFX [24], to allow for the GUI to be changed if the client desires.

The desktop application has been deemed necessary, rather than having a completely web based

service. Uploading entire datasets to the server over the internet to find the changed files can be an

expensive operation. Comparatively, simply finding the changed files by hashing them is not resource

intensive. This method will need to be implemented regardless of where the changes are calculated.

By doing this client-side it will reduce the time needed to upload the changes. This improves the user’s

overall experience.

The final component to the project is the web interface and consists of two parts. The first part, a

RESTful API [25] that will expose the versioning server to the web. The second part of the web interface

is the hosting of a web page that will allow the user to manage the data.

The full architecture of the system can be seen in Figure 4. The blue components are the components

that are within the scope of the project. The components in green are component external to the

project and in this case, show how the project will be integrated with NOMAD.

Joshua Donohue-Channon 13

Figure 4: Diagram of the complete system architecture. The system components are in blue and the external components in
green.

Joshua Donohue-Channon 14

5 Implementation
The objective of the project, as laid out in section 2, above. But to successfully to achieve them there

is a set of fundamental functionality that needs to be fulfilled. These functionality were determined

by working with the expert users of NOMAD. For the versioning to be useful for NOMAD it needs to

satisfy the following core functionality:

1. Add an experiment to a compound

2. Add a second experiment to a compound

3. Add an experiment to a second compound

4. Modify an experiment

5. Modify an experiment that belongs to two compounds

6. Remove an experiment from compounds

This core functionality is primarily based on the structure of data used by NOMAD. NOMAD is used to

help classify compounds for chemistry research. To do so conclusively it is often necessary to conduct

multiple experiments, each producing a new data set. The data sets generated by the experiments are

called experiments. When these experiments are grouped they are described as a compound, which

can also include associated meta.

The data this is project can manage is not simply limited to experiments and compounds. It can

manage any form of data that can be described as a project with sub-projects. For consistency we will

use compound to describe a collection of data sets, with experiment to describe the data sets. Keeping

the type of data that this project can handle generic, allows the project to be versatile and increases

the number of possible uses.

The way the data is structured and handled is the most important aspect of implementing the project.

The time spent upfront determining how to manage the data model has improved the development

process. It allowed for solutions to the more complex actions that might be completed by the user to

be found early on. This has helped to avoid reworking large sections of the programs as there was no

change in the data structure. Diagrams that show the interactions between experiments and

compounds throughout a series of user actions have been a very effective tool for visualising the

abstract data structure. These are included as Figure 5 through Figure 10, below.

The diagrams show the compounds in blue, denoted as CnVm, where n is the compound index and m

is the compound version number. The experiments are shown in green, denoted as EkVCn,l, where k is

the experiment index, n is the index of the compound that the experiment is associated with, and l is

the version of the experiment belonging to the compound. The legend shows the sequence actions

that occur when the user completes a given action. The solid arrows show a change in version,

whereas the dashed arrows show a reference.

The compounds and the experiments will be versioned separately, and a reference to the experiment

is stored with the compound. This reduces the duplication of data as a copy of the raw data only needs

to be copied once to the versioning server, then the experiment is branched and the branch refence

is stored with the compound.

This method means that the client’s data untouched, this is this beneficial as it will make clients more

comfortable adopting the system if they know that their data will be safe. Additionally, it removes

liability if the client loses their data as the versioning system does not have access to the data and

thus, making it impossible for it to be the cause of data loss.

Joshua Donohue-Channon 15

5.1 Add an experiment to a compound
The most basic action that the user will need to complete, is to add an experiment to a compound.

The user will start by initialising a new compound. Then the user will then add an experiment to the

compound. This will create a copy of the experiment from the read-only raw data on the versioning

server. Then, will create a branch of the experiment associated with the compound. Then a new

version of the compound will be created as the reference to the experiment is added. This can be seen

in Figure 5.

Figure 5: Sequence diagram for adding an experiment to a compound. The solid arrows show the actions that take place,
colour coded to the user action. The dashed arrows illustrate a reference to an experiment being stored by a compound.

5.2 Add a second experiment to a compound
The next functionality is the adding of a second experiment to compound. The first two stages are the

same as only adding a single experiment. The next stage is a repeat of the second stage. Note that

now the compound holds two references one to each of the experiments. This can be seen in Figure

6.

Figure 6: Sequence diagram for adding a second experiment to a compound.

5.3 Add an experiment to two compounds
Demonstrates how the data structure handles an experiment being added to two compounds. The

compounds are created as usual and the experiment is added to the first compound. Now, adding the

Joshua Donohue-Channon 16

experiment to the second compound will simply branch the experiment again from E0V0. This saves

duplication of data. This can be seen in Figure 7.

Figure 7: Sequence diagram for adding an experiment to two separate compounds.

5.4 Modify an experiment
This functionality, is the basis of the project allowing changes to the data to be tracked. Once the

experiment is modified this then creates a new version of the experiment and updates the reference

in the compound also creating a new version of the compound. This can be seen in Figure 8.

Figure 8: Sequence diagram that demonstrates the changes that occur when an experiment is modified.

5.5 Modifying an experiment that belongs to two compounds
Modifying an experiment that belongs to two compounds. Figure 9, shows how this works. The

modified experiment belonging to a given compound only affects the compound to which it is

associated.

Joshua Donohue-Channon 17

Figure 9: Sequence diagram that shows the effect of modifying an experiment that belongs to two compounds.

5.6 Remove experiment from compound
The final functionality is to be able to remove an experiment from the compound. If the user wishes

to remove the compound it simply removes the reference to the experiment from the compound, this

also creates a new version of the compound. This can be seen in Figure 10.

Figure 10: Sequence diagram for removing an experiment from a compound.

Combinations of the above actions will work together and form the basis for the use of the program.

The implementation of this uses git to manage the versioning of the experiments and the compounds.

To utilise the benefits of git, the JGit [26] library which is a pure java implementation of git will be

used. Git uses hashes to create a unique id for each commit. The compound will store its experiments

and the relevant version hash in a custom file. Git submodules were explored but were determined

not to be an ideal solution as it would copy the whole of the experiment into the compound. Using

the method of storing the reference only requires a list of experiments and version hashes to be

stored.

Git allows the git directory and the working directory to be different, this is a very useful feature and

is the primary reason for using git. The git directory contains the versioning information and the

working directory is where the files are managed for versioning, for example, files changed here can

Joshua Donohue-Channon 18

be saved as a new version. By being able to specify the git directory separately to the working

directory, there are two main benefits. Firstly, it allows read-only data files to be added. Secondly, the

working directory can be placed in a temporary location, reducing file duplication.

5.7 Versioning server
The versioning server handles access to the versioning capability. The versioning server provides

access to a web portal to manage the compounds using an Apache Tomcat server. [27] A RESTful API

is also provided using Jersey. [28] This is to respond to the web portal queries and to also handle

uploads from the desktop application. Tomcat and Jersey were chosen because NOMAD already uses

them. Once versioning is integrated with NOMAD, there will be less of a learning curve if the

development team wishes to make changes.

5.8 Web interface
The web interface is used to manage the compounds. The interface will allow users to add and remove

experiments from compounds. It uses the web framework, Foundation, for rapid prototyping. The

web interface allows users to view the version information of the compound via a source tree. A

JavaScript library called gitgraph [29] is used to display the source trees. The web interface can be

seen in Figure 11.

Figure 11: Screenshot of web interface. Shows two ways of displaying the compound versions: source tree (top) and table
(bottom).

5.9 Desktop application
The desktop application is where the user is able to upload their changed data files to the server. It

contains a staging area and shows which files are been modified, created, or deleted. JavaFX is used

for the GUI, and can be seen in Figure 12.

Joshua Donohue-Channon 19

Figure 12: Screen shot of desktop application. The staging area shows modified files in blue, new files in green and deleted
files in red.

Joshua Donohue-Channon 20

6 Evaluation

6.1 Expert Users
A demo of the project was conducted for Simone Conte an expert NOMAD user and CTO of NOMAD.

As Simone is a mentor for the dissertation the ethics artefact covers the interview, see appendix.

Qualitative feedback was collected as Simone interacted with the demo. Simone’s feedback on the

web interface:

“The is no drop down for the compounds”.

This is a valid point, there is no way to search the disk location for compounds and experiments.

Implementing a sample metadata strategy with a database would help to solve this problem and

help to make the project closer to a marketable solution.

“It is not clear which one is the most recent [version], you could mark one of the

dots a with different colour or make arrows”.

This statement was about the source tree. The source tree created with gitgraph is symmetric when

displayed vertically. The idea of arrow would be useful and help the user visualise the changes.

Gitgraph is on open-source project on github so it would be interesting to investigate this further to

see what the options are to show the order of the heads, and if there is not a suitable solution is it

worth the time to contribute to the project.

“Missing the ability to set the current head, at the moment the head is always the

most recent one, but you don’t have the ability so say that I want my head to be

this one”

Final thing of note from the interview, is a comment about setting the head of a compound.

Currently, compounds are not given the option to be branched. This was due to a concern in the

initial stages of the project that having multiple copies of the same compound might be too

complicated for users who have had no experience with VCS. Now that the interface is at a function

demo stage, it might be worth revisiting this.

A common thread throughout the interview was there was the issues with the user interface. The

interfaces were not always intuitive, and there was no supporting documentation or help to guide

the user. This needs to be address before providing the project to the client. Further information

needs to be collection about how users interact with the versioning program.

6.2 Objectives
The project success can objectively be determined by comparing it with the objectives set out for the

project at its outset. The primary objectives outline the fundamentals of the project and completion

of the primary objectives does not signify a successful project when considered alone.

6.2.1 Primary

ID Objective Status

Versioning

V1 Design and implement an interface for a version control system (VCS)
that can be integrated with NOMAD, and which will allow for versioning
at the compound-level tracking changes in experimental data.

Completed

Client-side application

Joshua Donohue-Channon 21

A1 Design and implement a desktop application that will provide a
mechanism for the user to stage the annotated data for uploading and
versioning. The application will run on the client’s computer and will be a
stand-alone application that can be installed on the client’s computer
without the need for any additional third-party software.

Completed

A2 Extend the application’s capabilities to manage the uploads in a manner
that avoids race conditions between multiple users uploading data
simultaneously.

Ongoing

A3 Collect qualitative feedback from selected expert users of NOMAD. Completed
Web interface

W1 Design and implement an interface to visualise and manage the versions
of the compounds and projects from within the NOMAD web interface.

Completed

Table 1: Status of primary objectives.

All the primary objectives are completed. The three categories of primary objectives: Versioning,

Client-side application and Web interface reflect the three parts of the system as seen above in the

system design. These objectives encompass the minimal functionality required of the system.

Versioning has been successfully implemented using JGit developed by Eclipse. This allows it to be

used to track changes to compounds. The versioning occurs at compound level and tracks the changes

in the raw data associated with any given compound.

This sub-section of the project has been written in a modular fashion, allowing it to be run as a stand-

alone application but also allows it to be easily added to any project. Research data is written directly

to NOMAD storage by machines, as such the data is read-only by the users. For this project to integrate

with NOMAD it needs to work with read-only raw data. This requirement has been met as it stores the

versioning information in a different location to the raw data. This way, the original raw data can be

versioned while keeping it read-only. This fully satisfies the requirement V1.

The next sub-section of the project, the desktop application, handles the uploading of the user’s

modified files to the server. The primary objectives for the client-side application are aimed at

producing a working desktop application. This is achieved when considering each of the three

objectives: A1, A2, and A3.

Starting with A1, this objective is completely fulfilled as the desk-top application portion is coded in

Java. This allows the application to run on a Java Virtual Machine (JVM) on the client’s computer. The

benefit of running the application in this manner allows the application to be run on a computer

regardless of the operating system. The JGit library is also used in this portion of the project, the

benefit of this is that the changes to the compound can be determined without having to install

additional version control software like Git. Though the client still needs Java this is deemed a

reasonable request due to its popularity and it is likely that prospective users already have it installed

on their machines.

Additionally, the application provides a staging area allowing the user to view the local changes and

to select which changes they wish to upload to the server.

Basic qualitative data was collected from a NOMAD user, this can be seen in the section 6.1, above.

Though only one user was asked for feedback. The interview was a source of rich qualitative data.

Asking more expert users could be useful in flagging up more problems early on.

The web-interface is the final part of the project and ties the other two parts together. Objective W1

dictates the main functionality of the web interface. The web interface uses gitgraph, a JavaScript

Joshua Donohue-Channon 22

library that allows source trees to be displayed on html pages. The web interface displays the changes

to the compounds and allows management of the experiments within the compounds. The interface

allows various versions of the compounds to be downloaded.

The project has successfully satisfied all the primary requirements. The competition of these

objectives marks the completing of a basic working prototype.

6.2.2 Secondary

ID Objective Status

Versioning
V2 Extend the versioning capabilities of the VCS to the project-level tracking

changes in Compounds.
Completed

V3 Extend the versioning to include tracking changes in meta-data. Ongoing

Client-side application

A4 Conduct usability testing about how users interact with the system,
collecting quantitative data and more qualitative data.

Pending

Web interface
W2 Implement the desktop application’s functionality in the NOMAD web

interface, to remove the need for the desktop application.
Pending

Table 2: Status of secondary objectives.

The secondary objectives are an extension of the primary objectives, primarily an extension of the

versioning portion of the program. The way that the project developed meant that the versioning at

the compound level was naturally the first step. The capability to version the meta data is in place, but

is not currently displayed to the user.

6.2.3 Tertiary

ID Objective Status

Versioning software

S1 Design and implement a system that will allow for the VCS to be applied
generically to any form of scientific data or project. The system will also
contain a RESTful API that will be used to fetch changes from the user,
either through a web interface or a desktop application. The system will
be self-contained and can be deployed with minimal configuration.

Ongoing

Table 3: Status of tertiary objectives.

There is only one tertiary objective and it is to keep the project generic, so it can be easily deployed

to an array of systems. A focus of development was to keep the project modular and this has helped

to make progress with this objective. The project needs to be more self-reliant, for example, the option

to have its own user and permission system would be a bit step towards achieving this objective.

Additionally, making the web interface more modular, for example, making widgets that can be easily

added to web pages would also be helpful.

6.3 Core versioning functionality
Functionality Status

1. Add an experiment to a compound Completed

2. Add a second experiment to a compound Completed
3. Add an experiment to a second compound Completed

4. Modify an experiment Completed

5. Modify an experiment that belongs to two compounds Completed
6. Remove an experiment from compound Completed

Joshua Donohue-Channon 23

Table 4: Status of functionality requirements.

All the core versioning functionality has successfully been implemented. This proves that a

comprehensive versioning platform has been developed. This provides the backbone for the project

and ensures that versioning of compounds and experiments are conducted properly.

6.4 Code Quality
Code quality is an important facet of this project because the motivation of the project is to eventually

integrate it into NOMAD. Since NOMAD is an active system, that is constantly in development, it is

important that project is thoroughly tested. Figure 13 shows Junit tests used in the project.

Figure 13: Passing JUnit tests for versionControl Class.

Having tests is not the only way to ensure code quality. Code coverage helps to ensure that all lines of

code and paths though a program are tested, this helps to avoid writing bad tests.

Figure 14: IntelliJ generated code coverage report.

Just over half of the classes, method, and lines are tested. The project mostly acts without bugs, but

before the project is integrated into other systems more tests should be written.

Joshua Donohue-Channon 24

6.5 Summary
The underlying versioning has been satisfactorily completed, as the primary objective V1 and the

secondary objective V2 have been completed. The completion of the core versioning functionality

shows that the project has a strong underlying versioning capability, even though the project does not

have the features to provide a comprehensive versioning service.

Though the project is light on functionality, the combination of a strong data model and a good

underlying versioning capability enables the scalability of the project. Additional functionality will

provide significant improvement.

Joshua Donohue-Channon 25

7 Future work

7.1 Advanced functionality
To improve this project as a solution to versioning research data, more advanced functionality needs

to be added. The main weakness in the project is the lack of user functionality. Currently the system

will only work on a secure network and allows all users to access all data. This is not ideal, as research

data is extremely valuable and needs to be protected. A system of users with a permissions system

allowing users to access only data they are authorised to view would be a very useful feature. This

functionality would need to be implemented in such a manner to encourage collaboration while still

protecting the integrity of the data.

Maintaining more complex metadata would also be useful. Allowing users to annotate files, and

comment on their contents and reason of a given version would be very useful for users who return

to data after a while the initial data collection process. Useful for allowing users to get more value out

of currently held data, especially when producing new data is an expensive enterprise. Tagging

versions would also be useful, for instance, labelling a version of a compound that has led to an

academic publication.

The web interface is useful but is not easy to integrate with other systems. If the web interface was

modular and a set of widgets was created, clients could simply plug in readymade components into

their current system. This allows them to integrate versioning into their current data managements

systems in a user-friendly manner, with minimal investment in upfront development.

The objective W2 would also be a big improvement to the user experience. Creating a web application

that could perform the actions of the desktop application in the browser, would make it easier for

users to use. This will also make the application more versatile and allow it to be used easily over

multiple computers and even provide the option for use on mobile. This will increase the types of data

that the project can be used with.

7.2 Integration into NOMAD
The initial motivation for the project was the need for a way to upload modified data to NOMAD while

maintaining the original data, thus there is already a demand for this project. Integrating this project

into NOMAD would have the most immediate impact and improve the service that NOMAD provides

to its over 900 active users. If integrated into NOMAD, it will continue to have impact as NOMAD is

actively maintained and is looking to be deployed to other institutions.

7.3 Software as a Service
Implementation of an online platform that would provide online storage for data that also had a

comprehensive versioning system, would also be a possibility for future work. The market for online

storage already has many established companies. The additional versioning capability would make it

stand out in the already congested market as it provides a unique service for research data

management. This has the most potential to affect a large client base if executed and marketed

correctly.

Joshua Donohue-Channon 26

8 Conclusion
A demand for versioning of scientific research data was identified by users of NOMAD, users wanted

to upload processed data to NOMAD without loosing the original raw data. There is no solution on

the market that will fit the need presented by NOMAD, nor is there solution that will allow for

scientific research data to be versioned. This project has tackled the challenge by producing a

solution for generic data.

The project focused on creating a robust data model that can handle all forms of data in a

manageable way. Core functionality for versioning compounds and experiments. Once the core

functionality was established a basic working solution was created. The project proves the point that

versioning of research data can be useful, and the strong data model created has really helped.

The project needs more work before it is a viable large-scale solution. But adding functionality such

as user support and permissions, as well as creating widgets for the web interface, will go a long way

towards this goal. This project is very versatile and has many exciting application, most of all, an

integration with NOMAD.

Joshua Donohue-Channon 27

9 References

[1] T. Wissik and M. Durco, “Research Data Workflows: From Research Data Lifecycle Models to

Institutional Solutions,” Linköping Electronic Conference Proceedings, no. 123, 2015.

[2] S. I. Conte, F. Fina, M. Psalios, S. Reyal, L. Tomas and A. Clements, “Integration of an active

research data system with a data repository to streamline the research data lifecycle: PURE-

NOMAD case study,” IDCC17, no. Practice Paper.

[3] V. Van den Eynden, C. Louise, M. Woollard, L. Bishop and L. Horton, “Managing and Sharing

Data: Best Practice for Researchers,” UK Data Archive, Essex, 2011.

[4] “Managing research data in your institution,” Jisc, 2 October 2017. [Online]. Available:

https://www.jisc.ac.uk/guides/research-data-management.

[5] “Research Data Management,” Sudamih Project, Oxford University Computing Services,

[Online]. Available:

http://sudamih.oucs.ox.ac.uk/docs/Research%20Data%20Management%20Factsheet.pdf.

[6] “Data versioning | Stanford University Libary,” [Online]. Available:

https://library.stanford.edu/research/data-management-services/data-best-practices/data-

versioning.

[7] A. Seering, P. Cudre-Mauroux, S. Madden and M. Stonebraker, “Databases, Efficient Versioning

for Scientific Array,” MIT, 2011.

[8] “Datahub,” [Online]. Available: https://datahub.csail.mit.edu/www/.

[9] A. Bhardwaj, S. Bhattacherjee, A. Chavan, A. Deshpande, A. J. Elmore, S. Madden and A.

Parameswaran, “DataHub: Collaborative Data Science & Management at Scale,” Cornel
University Libary, 2014.

[10] “Git,” [Online]. Available: https://git-scm.com/.

[11] “Mercurial SCM,” [Online]. Available: https://www.mercurial-scm.org/.

[12] “Apache Subversion,” [Online]. Available: https://subversion.apache.org/.

[13] “Cryptographic hash function - Wikipedia,” [Online]. Available:

https://en.wikipedia.org/wiki/Cryptographic_hash_function.

[14] “Universally unique identifier - Wikipedia,” [Online]. Available:

https://en.wikipedia.org/wiki/Universally_unique_identifier.

[15] “diff utility - Wikipedia,” [Online]. Available: https://en.wikipedia.org/wiki/Diff_utility.

[16] “Dropbox,” [Online]. Available: https://www.dropbox.com/en_GB/.

[17] “Google Drive,” [Online]. Available: https://www.google.com/drive/.

Joshua Donohue-Channon 28

[18] “Microsoft OneDrive,” [Online]. Available: https://onedrive.live.com/about/en-gb/.

[19] “The world's leading software development platform - GitHub,” [Online]. Available:
https://github.com/.

[20] “Bitbucket | The Git solution for professional teams,” [Online]. Available: https://github.com/.

[21] N. Marz and J. Warren, Big Data: Principles and best practices of scalable realtime data

systems, New York: Manning Publications Co., 2015.

[22] “Strategy Design Pattern,” Source Making, [Online]. Available:

https://sourcemaking.com/design_patterns/strategy.

[23] “Model–view–controller,” Wikipedia, [Online]. Available:

https://en.wikipedia.org/wiki/Model%E2%80%93view%E2%80%93controller.

[24] “JavaFX: Getting Started with JavaFX,” Oracle, [Online]. Available:

https://docs.oracle.com/javase/8/javafx/get-started-tutorial/jfx-overview.htm#JFXST784.

[25] “Representational state transfer,” Wikipedia, [Online]. Available:

https://en.wikipedia.org/wiki/Representational_state_transfer.

[26] “JGit,” eclipse, [Online]. Available: https://www.eclipse.org/jgit/.

[27] “Apache Tomcat,” Apache, [Online]. Available: http://tomcat.apache.org/.

[28] “Jersey - RESTful Web Services in Java.,” Oracle Corporation, [Online]. Available:

https://jersey.github.io/.

[29] “GitGraph.js,” [Online]. Available: http://gitgraphjs.com/.

Joshua Donohue-Channon 29

10 Appendix

10.1 Ethics artefact

